
In: Vichnevetsky, R., Borne, P. & Vignes, J. (eds.). Proc. of the 12th IMACS
World Congress on Scientific Computation, July 18-22 1988, Paris, France, 5 Vols.,
2: 761-763.

SAM - SIMULATION AND MODELLING SOFTWARE

FOR WORKING STATIONS

BASED ON MODELLING THEORY

Klara Vancso-Polacsek, Andreas Fischlin and Walter Schaufelberger

Projekt-Zentrum IDA
Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland

Abstract: This paper presents a new interactive modelling
and simulation software S A M (Simulation An d
Modelling) written in Modula-2. SAM is based on
modelling and simulation theory and was designed to hm
on working stations supporting a graphically oriented
user interface .with bit-map graphics, menu and window
technique. A prototype of SAM was realized as a set of
Modula-2 modules providing all functions required to
model and conduct simulation experiments on systems of
the classes Sequential Machine (SeqMach), Differential
Equation System Specification (DESS), and Discrete Event
System Specification (DEVS). The way, how the basic for­
malisms can be expressed in Modula-2, is shown using
the formalism Sequential Machine. The modelling and
simulation process with SAM is discussed in detail. The
general structure of SAM, and its connection to the
models is illustrated.

L Introduction

The requirement of interactive modelling and simulation
on personal computers and working stations requires
modifications of traditional simulation software archi­
tectures. First, most currently available simulation soft­
ware is not apt to be ported onto working stations without
major modifications because it does not properly support a
modern man-machine interface typical for advanced
working stations. Furthermore, a traditional simulation
software is usually not based on modelling theory. This
paper presents a new interactive modelling and simu­
lation software, SAM (Simulation And Modelling) which
was designed to run on working stations and is based on
modelling theory. It is implemented in Modula-2.
Working with an interactive program or software, the
man-machine dialogue is dominant. The high-resolution
graphics display of a working station supports a user­
friendly man-machine interface with window technique,
pull-down or pop-up menus. On the basis of these pri­
mary elements, a unified user interface can be defined
which is implementable on different working stations.
Simulation software built on top of such a unified inter­
face can be made machine independent. Moreover, a
high-resolution graphics display is useful for the graphi­
cal input and output of the modelling and simulation soft­
ware.
The theory of modelling and simulation (1, 2, 3) became
an independent discipline in the last years. Its role in the
practical modelling and simulation is similar to the role

of mathematics in the sciences and in engineering. In the
past modelling and simulation have developed their own
concepts of model description, simplification and vali­
dation, which are not specific to any particular discipline,
but can be generalized. The theory guarantees a compact,
homogeneous formalism not only for different models of
the same class but also for different classes. Further, it
makes modelling possible on various kinds of levels with
the same formalism. If the theoretical concepts can be ex­
pressed in Modula-2 in a way, that they do not lose their
abstract properties, then very different systems can be
handled with the same software. This simplifies the
implementation of a modelling and simulation software
for a large class of systems substantially.
SAM is written in the high-level programming language
Modula-2 (4), which was developed for constructing
complex, modular software systems. One can take advan­
tage of the benefits of Modula-2 on two levels: during the
development of SAM and during the manipulation of
models with SAM. To develop SAM, the programming
language must be suitable for the programming of a user­
friendly man-machine interface on working stations. The
suitability of Modula-2 for such tasks was shown e.g. in
(5). A further argument is, that efficient and inexpensive
Modula-2 compilers were implemented on a large num­
ber of working stations in the last years. The modularisa­
tion supports the hierarchic, modular organization of
models. Modula-2 allows the definition of structured data
types. The implementation of abstract formalisms which
are fundamental in the modelling theory requires power­
ful abstraction mechanisms in the programming
language used. Modula-2 possesses such a mechanism,
namely the so-called opaque types. The opaque types and
the powerful facility of the procedure types were both
needed in order to realize a proper design.

2. Definition of the Theoretical Concepts in
MODULA-2

The transfer of the theoretical concepts in Modula-2 can­
not be fully described here. Instead we illustrate the
principle by transferring one of the three basic for­
malisms, the Sequential Machine Formalism. The
Sequential Machine is given by a five-tuple in the form
SeqMach=(X,Q,Y,�,A.), where X, Q, Y, are the sets of the
inputs, states and outputs. � is the single step (or state
transition) function, (Le. �: QxX�Q) and A. is the output
function (A.: QxX� Y). Giv

,
en the current state and input, �

determines the next state of the system. The type SeqMach
in Modula-2 can be defined within a single definition
module in the following way:

TYPE

Input; State; Output; (* X, Q, Y *)
SingleStepFunction=PROCEDURE(State, Input) :State;

(* 8 *)
OutputFunction=PROCEDURE(State, Input) :Output; (* A *)
SeqMach = RECORD

Delta: SingleStepFunction;

Lambda: OutputFunction;

END;

The sets of inputs, states and outputs are declared as
opaque types. That means, that the modeller must define
the corresponding data structures depending on the cur­
rent model in the implementation module. The' type
SeqMach is given by a record structure, where the two
components are function procedures with predefined
formal para�eters and result's type. These declarations
are suitable for all systems which can be interpreted as a
SeqMach. The transfer of the three basic formalisms
(SeqMach, DESS, DEVS) in Modula-2 was discussed in
more detail in ref. (6).

3. Modelling and Simulation with SAM

The manipulations during the interactive modelling and
simulation with SAM can be classified into two groups.
The general manipulations, such as choosing the model
or the experiment, can be executed for all types of models.
The model specific operations depend on the model. Such
a manipulation is e.g. the definition of a transition
function for a current model of the type Sequential
Machine. The general manipulations can be supplied by
SAM, while the model specific ones must be written by the
modeller in Modula-2. The formal parameter list of the
procedures is predefined.
Figure 1 shows the architecture of SAM. The models
"Model 1" ... "Model n" are formulated as M o d u l a - 2
modules. They are connected with SAM via a predefined
interface. The models are expressed by the corresponding
procedures in the particular implementation modules.
However, the structure of these modules must be known
to SAM. For this reason the modeller must write the
implemen tation modules for predefined definition
modules only. There are three types of predefined defi­
nition modules: "SeqMach", "DESS" and "DEVS". They
correspond to the abstract system formalisms defined in
(1,2).
The modelling process with SAM is the following. The
modeller edits the models of a certain class in an imple­
mentation module. The models are expressed by the
model specific procedures. This requires the imple­
mentation of four procedures for a model of the type
SeqMach: two procedures for the definition of the model
itself (the transition function and the output function), one
for the input needed by the current experiment and one to
produce the display (or file) output of the simulation
results. The procedures for the experiment input and the
display output may be the same for different models, as
long as they belong to the same class. On the other hand,

762

(Editing/Compiling)

n
md
a e
c p
h e
i n
n d
e e

Figure 1: The general architecture of SAM. Any number
and classes of models are provided by the
modeller and are to be linked dynamically to
SAM via predefined interfaces. Boxes cor­
respond to Modula-2 modules, arrows signify
imports.

there can also be different experiments and display
procedures used for the same model.
Models are made ready by compiling their implemen­
tation module and installing them by means of SAM. M­
terwards, the models may be used for interactive simu­
lation. The modeller has the possibility to install new
models or to delete the unused models at all times.
To reduce the programming work, the procedures, which
are used frequently, can be collected into a separate
library module. Once written the modeller can import
them any time in order to define the current model. In
this way the modeller can build a modelling environment
specifically tailored to his individual needs. The data
structures for the models in the class DESS (Differential
Equations) are the same for all models of that class.
Hence, for this class of models, even the so-called model
specific procedures can be supplied by SAM.

4. The Architecture of SAM

SAM was designed in a modular fashion. Its architecture
is shown in Figure 1. SAM consists of the modules within
the bold frame. Single boxes correspond to Modula-2
modules; the arrows represent imports.
The module SAMMaster is the main program module. It
controls the main activities within SAM and it is respon-

763

sible for the dialogue with the user. All other modules
consist of a definition and an implementation part.
The interface between SAM and the models to be defined
by the modeller consists of a few procedures. They can be
imported from the module SAMlnstall.
The modules SAMModels, SAMBase, SAMLists,
SAMPictures are internal modules of SAM, and they ex-
port no objects of interest to the modeller. .
The double border box "User interface" stands for the set
of modules called "Dialog Machine" (5). They export ob­
jects necessary for a user-friendly man-machine interface
and isolate SAM from the machine dependent system
software required by the user interface. Not SAM, only the
implementation parts of the "Dialog Machine" modules
are system dependent.
The first prototype of SAM was implemented using the
MacMETH Modula-2 Language System (7) on an Apple
Macintosh II computer. Figure 2 shows a part of the
screen during a Monte-Carlo simulation of a polymeriza­
tion process modelled as a SeqMach.

• Enuironment Uiew Modelling Simulation

Modellin

Distribution function
number of mol.

..
. . 1000.00 , , ' .' :

800.00 ,', , , ,'
+

600.00 : - : " :

*:
400.00 ,: : -

200.00

;f;
. : "' : : :

..
.. ", ' .

�;. I : O. 00 �� ��.,....,.-.-�.,...;;...;;:..�.,....;....;...,.-J
0.00 5.00 10.00 15.00 20.00 length '2l

Figure 2: A part of the screen during a M o n t e - C a r l o
simulation o f a polymerization process mod­
elled as a SeqMach. The window with the title
"Distribution function" presents the results of
an experiment.

5. Discussion

The first results of our work are the definition of the con­
cepts of modelling and simulation theory in Modula-2,
and the design and development of a prototype of a new
interactive modelling and simulation software, SAM.

The abstraction mechanism of Modula-2 was powerful
enough to define the three basic formalisms (SeqMach,
DESS, DEVS) in an abstract, compact form. The most im­
portant tools were the opaque and procedure types.
SAM does not offer a new simulation language, the
models must be defined using the programming
language Modula-2. The modeller has all the possibilities
of this powerful, high-level programming language.
However, the formulation of the models is restricted and
generalized by formal definitions, which are based on the
modelling and simulation theory. By means of these for­
mal definitions it is possible to handle the models in the
same class in a unified way, e.g. by SAM. Structured,
hierarchical systems can be defined using the structured
data types and the module concept of Modula-2.
The use of the modelling theory made it possible to build a
simulation software, which is suitable to model and
simulate very different classes of systems.
The adopted techniques have proved to be useful and
flexible. For instance, SAM's architecture allows the
modeller to construct a "personal" modelling and simu­
lation environment for frequently used models.
The prototype of SAM was implemented on the Apple
Macintosh II. It has been found that such a high-reso­
lution graphics display is fundamental not only for the
user-friendly man-machine interface, but also for the
flexibility of the experiment input and for the quality of the
graphical output produced during simulations.
The user interface of SAM was based on the "Dialog
Machine" which consists of a set of modules providing the
basic interface objects of a modern working station (such
as graphic windows, pull-down menus). The "Dialog
Machine" has allowed to implement SAM in a simple and
efficient way. Moreover, it has substantially supported the
portability of SAM.

References

(1) ZEIGLER, B. P., Theory of Modelling and Simulation, John

Wiley & Sons, 1976
(2) ZEIGLER, B. P., System Theoretic Foundations of Modelling

and Simulation, in: OREN, T. I., ZEIGLER, B. P., ELZAS, M.
S.(EDS): Simulation and Model-Based Methodologies: An In­

tegrative View, Springer-Verlag, 1984
(3) WYMORE, A.W., Theory of Systems in: VICK, C. R., RA­

MAMOORTHY, C. V.(EDS.): Handbook of Software Engi­

neering, Van Nostrand Reinhold Company, New York, 1984
(4) WIRTH, N., Programming in Modula-2, Third, Corrected Edi­

tion, Springer-Verlag, 1985
(5) FISCHLIN, A., Simplifying the usage and programming of

modern working stations with Modula-2: "The Dialog Machine:

Project-Centre IDA, ETH ZUrich, 1986.
(6) Vancso, K., Fischlin, A., Schaufelberger, W., The Development

of Interactive Modelling and Simulationssoftware with Modula-2,

(in German), in: Halin, J.(ed.):, "Simulationstechnik", 4. Sym­

posium Simulationstechnik, ZUrich, 9.-11. September 1987,
Proceedings, Springer-Verlag, Informatik-Fachberichte 150, pp.

239-249.
(7) Wirth, N., Gutknecht, J., Heiz, W., Schar, H., Seiler, H., Vet­

terli, Ch., MacMETH: A Fast Modula-2 Language System for

the Apple Macintosh, Institut fUr Informatik, ETH ZUrich, 1986.

