
Compur. Educ. Vol. 12. No. 4. pp. 507-5 I?. 1988 0360- I3 I5 88 53.00 + 0.00

Primed m Great Briram All rights resened Copyright C 1988 Pergamon Press plc

AUTOMATED CONSTRUCTION OF INTERACTIVE
LEARNING PROGRAMS IN MODULA-2

KLARA VANCSO-POLACSEK and ANDREAS FISCHLIN
Swiss Federal Institute of Technology Ziirich (ETHZ). Project-Centre IDA.

ETH-Zentrum. CH-8092 Ziirich. Switzerland

(Receired 6 Ocrober 1987; receiced for publication 23 Februar_r 1988)

Abstract-A frame program generator written in Modula-2 is presented, which allows an automatic
generation of dialogs of interactive learning programs based on the “series-parallel-repetition” user model.
The formal description of a dialog program serves as input, and a Modula-2 source program is produced.
The generated program is built up of empty dynamic pages which are connected with each other according
to the structure defined in the input. The developing process of a learning program is illustrated by an
example.

INTRODUCTION

A new methodology for the development of interactive learning programs which employs the
separation of the formal aspects of dialog-controlled programs from the application specific aspects
was described in [l] and [2]. Using this methodology dialog-directed programs can be produced
more efficiently. The benefits are threefold:

l This approach makes an automatic construction of the dialog possible which reduces the
programming effort.

l Freeing the author from the programming of the man-machine interface, the programs will
be shielded from errors frequently found in dialog design.

l Different programs behave similarly, i.e. once the user learned to control one program, he
is familiar with the usage of all programs constructed in this way.

Three different user models of interactive learning programs and their realization aspects are
discussed in [3]. One of these user models is the “series-parallel-repetition (s-p-r)” model which has
been defined elsewhere [l, 2,4]. The detailed structure of the ‘%-p-r” model will be illustrated by
the included sample program.

Construction of interactive learning programs based on the user model “series-parallel-
repetition” can be supported by using a so called frame program generator. A portable frame
program generator has been written with the UCSD-Apple Pascal-system for the Apple II personal
computer [1,2,4]. This software transforms formally described networks into executable Pascal
frame programs. Advantages of this approach are that the programming language Pascal is widely
available on almost any computer and many programmers are familiar with this language.
However, the main disadvantage is that inherent properties of the language Pascal do not properly
support modularization. For instance the splitting of a learning program into a formal dialog
controlling and subject specific part can not be reflected in the structure of the final program. Pascal
forces the programmer to remerge the two parts in one single main program. Hence, teachers with
minimal programming skills are confronted with large, automatically generated program sections,
full of the low-level dialog controlling code, which they don’t understand and which they must
never touch. This violates the principle of information-hiding. Moreover, the programmer is forced
to find the correct location into which he has to write his subject specific code, locations which
are typically obscurely embedded in the automatically generated and hardly understood code.

Modula-2 is a programming language particular designed to support modularization, which also
supports elegantly information hiding [5]. In this paper we describe our approach to use this
language to solve some of the problems encountered with previous versions of frame program
generators and present in details the resulting new frame program generator [6] together with an
example.

507

508 KLARA V~WSO-POLM.XK and ASDREG FISCHL~N

THE FRAME PROGRAM GENERATOR

The here described frame program generator (FPG) generates Modula-2 frame programs based
on the user model “series-parallel-repetition”. The FPG Version I. is a portable program which
can be used on computers with traditional, cursor-addressable, alphanumeric CRT-displays (e.g.
IBM PC). A dynamic page corresponds to a whole screen and the user controls the dialog with
command keys. The FPG Version 2. was written on the MacintoshTM [7] by means of the software
package “Dialog Machine” [8]. A dynamic page is a window and the dialog is driven by pull-dawn
menus, activated by the Macintosh one-button mouse.

The FPG takes as input the description of a network and produces a Modula-2 frame program
containing empty procedures according to the individual dynamic pages defined in the input file
(for each dynamic page a procedure with an empty body is generated). An executable dialog
program is obtained by compiling (and linking) the generated program. It runs the control dialog
which allows the user to move among the dynamic pages. which, however, remain empty, i.e. beside
their title they display no information. Preceeding the final compilation of the complete program,
the “content” of the dynamic pages has to be programmed.

The network must be expressed in a so-called LL(1)[9] formal language. A parsing algorithm
can be constructed for this formal language which determines the syntax tree by scanning the input
file from Left to right while Looking only one symbol ahead [IO]. The syntax is given below using
the meta language Extended Backus Naur-Formalism (EBNF):

network definition = > “NETWORK”“(“identifier”)“network”ENDNETWORK”.
network = >dynpagelsequence]selection.
dynpage = > “DYNPAGE”“(“dynpagedef“)“.

dynpagedef = > string”,“identifier.
sequence = > “SQBEGIN”network{network~..SQEND””()”.
selection = >“SLBEGIN”“(“dynpagedef“)“network network {network)

“SLEND”“(“dynpagedef“)“.
string = > ‘““{character}““‘I”“(character)‘”’.

identifier = > letter {letter/digit).

The frame program generator consists of the following three modules:

(1) MODULE Network
(2) DEFINITION MODULE Runnet
(3) IMPLEMENTATION MODULE Runnet

The way how the frame program generator operates and a learning program is constructed is
shown in Fig. 1. The program “Network” takes the network definition file edited previously by

network definition file
(“filename.NDF”) “Network”

data structure file
(“networkname.DST”)

(“networkname.MOD”)

Compiler “networkname.OBhI”

Fig. I. Operation of the frame program generator.

509 Interactive learning programs

NETWORK(Opti)
SQBEGIN

DYNPAGE(“Help”,Help)
DYNPAGE(“Set parameter”,Set)
SLBEGIN(“Method Selection”,Select)

DYNPAGE(“Show optimization with method l”,Optil)
DYNPAGE(“Show optimization with method 2”,0pti2)
SLEND(“Discussion”,EndSelect)
SQEND(“Fina1 remarks”,EndProgram)

ENDNETWORK

Fig. 2. An example network definition file. The string parameter of the individual dynamic page definition
becomes the heading of the dynamic page represented in a window, and the identifier in the same

parenthesis determines the procedure name in the generated program.

the user and proves its syntactic correctness. If the network definition is syntactically incorrect,
error messages will be displayed with the lines containing the error. If the network definition is
syntactically correct, the program Network produces a frame program written in Modula-2 for the
user and an internal data structure file for the program “Runnet”. The frame program contains
empty procedures according to the individual dynamic pages defined in the network definition file.

Help skip \
/

Set parameter
skip \

/
I I

Method selection
skip

Show optimization Show optimization
with method 1 with method 2

repeat Discussion

repeat
. Final remarks

Fig. 3. The structure of the example program which is defined in the network definition file shoun
in Fig. 2.

510 KLARA VANCSO-POLACSEK and ANDREAS FISCHLIS

MODULE Opti;
FROM Runnet IMPORT Run;

PROCEDURE Help;
BEGIN
END Help;

PROCEDURE Set;
BEGIN
END Set;

PROCEDURE Select;
BEGIN
END Select;

PROCEDURE Opti 1;
BEGIN
END Optil;

PROCEDURE Opti?;
BEGIN
END Opti2;

PROCEDURE EndSelect;
BEGIN
END EndSelect;

PROCEDURE EndProgram
BEGIN
END EndProgram;

VAR Pages: ARRAY [O.. 61 OF PROC;

BEGIN
Pages[O]: = Help;
Pages[11: = Set;
Pages[2]: = Select;
Pages[3]: = Optil;
Pages[4]: = Opti2;
Pages[S]: = EndSelect;
Pages[6]: = EndProgram;
Run(Pages,“Opti.DST”,TRUE);

END Opti.

Fig. 4. The frame program generated by the frame program generator according to the network definition
file given in Fig. 2.

In the program body the names of these procedures will be passed into the program “Runnet”.
At this stage it is already possible to compile and execute the automatically generated program
module. This is helpful for the testing of the general program behavior and allows for corrections
of the overall design of the learning program at an early time (in particular before much has been
invested in the programming of dynamic pages fitting poorly the general purpose of the learning
program). The user has to “fill in” the bodies of the empty procedures to obtain the fully functional
learning program. The executable program imports the program “Runnet” and inputs the internal
data structure file generated by the program “Network”.

An example network definition file is presented in Fig. 2. The corresponding program structure

Interactive learning programs

Fig. 5. A screendump of the generated and compiled program “Opti” running on the Macintosh.
The actual dynamic pages is the page “Method Selection”.

is illustrated in Fig. 3. The program generated by the frame program generator according to this
definition can be seen in Fig. 4. Figure 5 shows a screendump of the generated program after
compilation.

FINAL REMARKS

The structure of the learning program is such that the programmer is no longer confronted with
the formal dialog controlling program parts which may be perfectly hidden in the module
“Runnet”. He can concentrate on the writing of the empty procedure bodies (Fig. 4) and is allowed
to write a well structured program containing only the subject specific parts. No longer have global
objects typical for learning programs to be mixed with other objects needed by the formal dialog
controlling program parts. The principle to reflect logical structures in the software design can be
naturally realized as well as the principle of information hiding.

It would have been possible to follow a slightly other design in order to avoid the installation
of the dynamic page procedures in the frame program: namely to generate a module exporting the
dynamic page procedures and containing in its implementation solely the bodies of the dynamic
page procedures. However, in order to avoid recompilation of the frame part this approach requires
the production of an additional program module importing the dynamic page procedures. The
presented approach has been preferred over this approach due to its simplicity (one module only),
although this has the disadvantage that the installation of the dynamic page procedures cannot
be hidden from the programmer (see module body in Fig. 4).

REFERENCES

1. Nievergelt J. and Ventura A., Die Gestnltung lnreraktiuer Programme. Teubner, Stuttgart (1983).
2. Nievergelt J., Ventura A. and Hinterberger H.. Inferactive Computer Programs for Education. Addison-Wesley,

Reading, MA (1986).
3. Vancso K. and Fischlin A., User models o/inreracrice learningprogrums. Internal report, Project-Centre IDA CELTIA.

Swiss Federal Institute of Technology Ziirich (ETHZ), 17 pp. (1987) (To be published).
4. Ventura A., Einsac und Programmierung des Compurers als Werk:eug fir den Unrerrichr. Ziirich, Diss. ETH Nr. 7752

(1985).
5. Wirth N.. Programming in Modula-2, 3rd corrected edition. Springer, Berlin (1985).

512 KLARA VA~CSO-POLACSEK and AMIREAS FISCHL~N

6. Vancso K., A porrable frame program generator in Modula-2for auromaric consfrucrion of interactire learning programs
based on the “series-parallel-repetition” user model. User’s Guide, Project-Centre IDAjCELTIA. Swiss Federal Institute
of Technology Ziirich (ETHZ) (1986).

7. Chemikod S., Macintosh Revealed. Hayden, London (1985).
8. Fischlin A., Simplifi’ing rhe usage and rhe programming of modern working srations with ,Modula-2: rhe .‘Dialog

Machine”. Internal report, Project-Centre IDA/CELTIA. Swiss Federal Institute ofTechnology Ziirich (ETHZ), 13pp.
(1986) (To be published).

_~

9. Rayward-Smith V. J., A First Course in Formal Language Theory. Blackwells. Oxford (1983)
IO. Wirth N.. Compilerbau, 4. corrected edition. Teubner, Stuttgart (1986).

