

SYSTEMÖKOLOGIE ETHZ

SYSTEMS ECOLOGY ETHZ

January 1995

Eidgenössische Technische Hochschule Zürich ETHZ
Swiss Federal Institute of Technology Zurich
Departement für Umweltnaturwissenschaften / Department of Environmental Sciences
Institut für Terrestrische Ökologie / Institute of Terrestrial Ecology

Bericht / Report Nr. 20

Practical Considerations on Writing Portable
Modula-2 Code

J. Thöny

The System Ecology Reports consist of preprints and technical reports. Preprints are ar-
ticles, which have been submitted to scientific journals and are hereby made available to
interested readers before actual publication. The technical reports allow for an exhaustive
documentation of important research and development results.

Die Berichte der Systemökologie sind entweder Vorabdrucke oder technische Berichte.
Die Vorabdrucke sind Artikel, welche bei einer wissenschaftlichen Zeitschrift zur Publi-
kation eingereicht worden sind; zu einem möglichst frühen Zeitpunkt sollen damit diese
Arbeiten interessierten LeserInnen besser zugänglich gemacht werden. Die technischen
Berichte dokumentieren erschöpfend Forschungs- und Entwicklungsresultate von allge-
meinem Interesse.

Adresse des Autors / Addresse of the author:

J. Thöny
Systemökologie ETH Zürich
Institut für Terrestrische Ökologie
Grabenstrasse 3
CH-8952 Schlieren/Zürich
S W I T Z E R L A N D

e-mail: sysecol@ito.umnw.ethz.ch

© 1993 Systemökologie ETH Zürich

Practical considerations on writing portable
Modula-2 code

J. Thöny
Systems Ecology, ETHZ

1 INTRODUCTION.. 1

2 WHAT IS PORTABILITY.. 1

3 PORTABILITY ON LANGUAGE AND COMPILER IMPLEMENTATION LEVEL
... 1

3.1 Type transfer.. 1
3.2 Dynamic Memory... 2
3.3 Module SYSTEM ... 3
3.4 Type size, Type range, memory alignment... 3
3.5 INTEGER - CARDINAL ... 3
3.6 LONG types... 4
3.7 Module file names... 4
3.8 ASCII character set .. 4
3.9 Conditional Compilation.. 5
3.10 Modula-2 Libraries... 5

4 PORTABILITY ON APPLICATION LEVEL.. 6
4.1 File handling... 6
4.2 Linking an application.. 6

5 LITERATURE ... 6

Practical considerations on writing portable Modula 2 code

jth, June 12, 2003 Page 1

1 Introduction

This paper discusses some aspects of portability of Modula-2 code and gives some rules which helps
in writing portable code. It is meant for all persons which programs in Modula-2.

2 What is portability

Portability means, that a system written using the language Modula-2 is easy transferable and shares
the same behaviour on every platform which conforms a defined standard.

We consider several aspects of portability; portability on Modula-2 code level, portability on compiler
implementation level and portability on application level.

The standard for Modula-2 of this report is "Programming in Modula-2, Third, corrected edition"
[PIM3] (Wirth, 1985) with some restrictions.

3 Portability on language and compiler implementation level

Modula-2 is not fully standardized in every aspect. Especially the handling of LONG types are not
well defined. The various compiler implementations don't fully implement PIM3, or add several
extensions to it.

3.1 Type transfer

Modula-2 performs a strong type checking. It isn't possible to use every variable or expression in
every context. We have to distinguish between expression and assignment compatibility. Type
transfers are easier in assignments than in expressions.

It is sometimes necessary to use a variable or expression in contexts which differ in their type. For
Example:

 VAR

 i : INTEGER;

 r : REAL

 BEGIN

 r := 0.0;

 FOR i := 1 TO 100 DO

 r := r + FLOAT(i); (* REAL and INTEGER inside one expression *)

 END;(*FOR*)

For such situations, Modula-2 offers type transfers. They can be safe or unsafe.

A safe type transfer respects the semantic of the source type. FLOAT(1) yields 1.0. Semantic checks,
like range checks are performed. TRUNC(1.0e20) produces a range error.

Practical considerations on writing portable Modula 2 code

jth, June 12, 2003 Page 2

An unsafe type transfer transfers the source type, without respecting its semantics, to the destination
type.

Rules for more portable type transfers:

1 Use type transfers only as expressions. This prohibits the usage of type transfers as a VAR
parameter in a procedure call.

2 Whenever possible, take advantage of assignment compatibility. Together with rule 1, 90%
of the type transfers can be accomplished by this method in a fully portable way.

3 Whenever possible use the standard, safe type transfers: FLOAT, ORD, TRUNC.

4 Never use VAL, although it was defined in PIM3 as the inverse function of ORD. Since
VAL has a different definition and semantics in the various compiler implementations we
should not use it. Use T(x) or write your own transfer function instead.

3.2 Dynamic Memory

Allocate allows to connect every data structure to a pointer type. Therefore we have to use Allocate
with great care.

Rule:

5 Always use the form: Allocate(pT, SIZE(T)) where pT is a pointer which points to type T.

Since Modula-2 doesn't' support arrays of variable size, this rule cannot be applied in every situation.
If you simulate variable size arrays by partial allocated array types, never export a pointer to such
arrays. Be aware of pitfalls. The biggest pitfall is p^ without index (p^[index]).

Example to illustrate this pitfall :

 TYPE

 RealArray = ARRAY [0..8000] OF REAL;

 RealArrayPtr = POINTER TO RealArray;

 VAR

 myOpenArray1, myOpenArray2 : RealArrayPtr;

 myOpenArraySize : INTEGER;

BEGIN

 myOpenArraySize := 100;

 Allocate(myOpenArray1, myOpenArraySize*SIZE(REAL)); (* =ARRAY[0..99]OF REAL *)

 Allocate(myOpenArray2, myOpenArraySize*SIZE(REAL)); (* =ARRAY[0..99]OF REAL *)

 myOpenArray1^ := myOpenArray2^; (* This copies 8001 REALS ! *)

END Test.

This example will be executed on a machine without protected memory, but it will produce garbage. It
will copy 8001 REALS to the memory location starting at ADDRESS(myOpenArray1), where only
100 REAL are reserved. It is likely that this will overwrite other data structures. On machines with
protected memory, you will get a protection error.

Practical considerations on writing portable Modula 2 code

jth, June 12, 2003 Page 3

3.3 Module SYSTEM

Whenever possible avoid imports from SYSTEM. This is not always possible for ADDRESS or
ADR.

Rule:

6 Whenever possible avoid imports from SYSTEM.

3.4 Type size, Type range, memory alignment

It is not the responsibility of a programmer to know about the memory size of a type. It is wrong to
assume that SIZE(LONGINT) > SIZE(INTEGER) or that MAX(LONGINT) > MAX(INTEGER).

It is the compilers responsibility to perform address arithmetic. If you implement your own address
arithmetic, your code may run on the computer and compiler where you have developed it. It is likely
that it will fail on another computer or compiler. The reason is, that you never know the memory
alignment and the order of variables on every potential target host.

Rules:

7 Never make any implicit or explicit assumption about the size or the range of a type. Let the
compiler perform address arithmetic and use the MIN/MAX functions if you have to use
range information.

8 Don't perform your own address arithmetic.

9 Never use variant records to map one data structure into an other. If you have to do it, you
have to perform an integrity check on the data structure.

3.5 INTEGER - CARDINAL

INTEGER and CARDINAL are assignment compatible, but not expression compatible. Some
compilers implementations return INTEGER, some CARDINAL on HIGH and ORD.

Rule:

10 Use HIGH and ORD only as the sole factor within an expression which is used for an
assignment or as a procedure's value parameter.

Example:

PROCEDURE DoIt(str : ARRAY OF CHAR);

 VAR

 i, highStr : INTEGER

BEGIN

 highStr := HIGH(str);

 FOR i := 0 TO highStr DO (* and not FOR i := 0 TO HIGH(str) DO *)

 ...

Practical considerations on writing portable Modula 2 code

jth, June 12, 2003 Page 4

3.6 LONG types

The LONG types were introduced late (Wirth, 1988). The relationship between the LONG types and
other types were never officially defined. In the mean-time, most compiler builders have introduced
their own LONG extension. This resulted in portability problems.

Rules:

11 Define LONG constants with type transfers. i.e. LongOne = LONGINT(1). Never use
literal constants inside your code. e.g. IF long < LongOne THEN and not IF long < 1D
THEN.

12 TRUNCD, LTRUNC, LONGTRUNC rsp. FLOATD, LFLOAT, LONGFLOAT are used
by the various compiler implementation for the same standard type transfer function. Avoid
using them. If this is not possible, try to use assignment compatibility or encapsulate the
transfer function inside a function.

3.7 Module file names

The naming conventions of module file names are compiler and platform dependent. If we consider
Unix, Mac, and MS-DOS platforms, we can define the following rules:

13 The file name has to be in the form: ModuleName.Extension. The extension identifies
whether it is an (implementation) module or an definition module. ModuleName must match
the case of the name of the module.

14 The module names of an application have to be distinguishable inside the first eight,
capitalised characters.

15 The extension cannot be used for naming, i.e. MyModule.mod2.

3.8 ASCII character set

Most compilers allows the use of non ASCII characters (CHAR(128)-CHAR(255)). Since they are
highly platform dependent, it is recommended to use only ASCII characters.

Rules:

16 Use only printable characters in the range CHAR(32) to CHAR(126).

17 Use the EOL character supported by the corresponding file and terminal library. Never use
CR and/or LF.

Practical considerations on writing portable Modula 2 code

jth, June 12, 2003 Page 5

3.9 Conditional Compilation

It is impossible to write portable code in any circumstances. The best work around would be to use
conditional compilation. Since the syntax of conditional compilation is highly compiler depended, it is
not possible to use these technique. As an alternative, we can use several versions of modules. To
prevent an unnecessary tree of versions we define the following rules:

18 These rules only apply if the differences between the versions are small. If the modules
differ to a large extent, we have to maintain separate versions for every desired
compiler/platform.

19 Declare a master module. This module unites all versions. They are all commented out, but
the one of the main platform. By changing the comments, you can generate any platform-
specific version. Never edit the derived versions, use only the master module instead.

20 Every alternating part starts with the comment (* IF VERSION_NAME *) and is closed by
(* ENDIF VERSION_NAME *). (This rule is not fully defined yet)

21 All versions are listed inside a comment at the beginning of a module.

3.10 Modula-2 Libraries

There exists no standard Modula-2 library. Most compilers adapt more or less the libraries mentioned
in PIM3. Therefore, a fully portable library or application must not directly rely on any of these
library modules. It is recommended to define the smallest possible interface to the operating system
and build the own library on top of this. An example are the modules SysDep and Portab of RASS
(Thoeny et al., 1994).

Practical considerations on writing portable Modula 2 code

jth, June 12, 2003 Page 6

4 Portability on application level

Even when we achieve to write fully portable source code, an application written in Modula-2 doesn't
need to be fully portable. An application may differ in the behaviour while executed on different
platforms.

4.1 File handling

An application consists not only of the program itself, but often also of auxiliary data files. The file
handling has also to be portable to achieve a portability on the application level. In addition to the rules
16 and 17 we can define the following rules:

22 Filenames must not exceed eight characters. In addition to that, an extension of maximum
three characters are allowed.

23 Filenames are case sensitive, but don't depend on the case. The reason is, that some platforms
are case sensitive (Unix) and some not (Mac).

24 Never hard-code a path name. If you need path names, you should use a mechanism like
described in "Modula-2 Libraries".

25 Determine the end of file using the content of a file. This is more secure than relaying on the
EOF mechanism.

4.2 Linking an application

It is impossible to achieve a fully portable solution of the linking process. A partial portability may be
achieved by using make files. The make tools where introduced by the Unix systems. Most platforms
supply such a tool. . They are more or less compatible. Use the macro facility of make to define the
tools (compilers, linker etc.) and their options.

5 Literature

Thoeny, J., Fischlin, A. & Gyalistras, D., 1994. Introducing RASS - The RAMSES Simulation Server.
Internal Report # 21, Systems Ecology Group, ETHZ, .

Wirth, N., 1985 (Third, corrected edition ed.). Programming in Modula-2. (Texts and monographs in
computer science), Gries, D., (ed.);Springer:

Wirth, N., 1988 (Fourth, corrected edition ed.). Programming in Modula-2. (Texts and monographs
in computer science), Gries, D., (ed.);Springer:

BERICHTE DER FACHGRUPPE SYSTEMÖKOLOGIE
SYSTEMS ECOLOGY REPORTS

ETH ZÜRICH

Nr./No.

1 FISCHLIN, A., BLANKE, T., GYALISTRAS, D., BALTENSWEILER, M., NEMECEK, T., ROTH, O.
& ULRICH, M. (1991, erw. und korr. Aufl. 1993): Unterrichtsprogramm "Weltmodell2"

2 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Stabilität"

3 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Drosophila"

4 ROTH, O. (1990): Maisreife - das Konzept der physiologischen Zeit

5 FISCHLIN, A., ROTH, O., BLANKE, T., BUGMANN, H., GYALISTRAS, D. & THOMMEN, F.
(1990): Fallstudie interdisziplinäre Modellierung eines terrestrischen Ökosystems unter
Einfluss des Treibhauseffektes

6 FISCHLIN, A. (1990): On Daisyworlds: The Reconstruction of a Model on the Gaia Hypothesis

7 * GYALISTRAS, D. (1990): Implementing a One-Dimensional Energy Balance Climatic Model on a Microcomputer (out of print)

8 * FISCHLIN, A., & ROTH, O., GYALISTRAS, D., ULRICH, M. UND NEMECEK, T. (1990): ModelWorks - An Interactive Simulation
Environment for Personal Computers and Workstations (out of printÆ for new edition see title 14)

9 FISCHLIN, A. (1990): Interactive Modeling and Simulation of Environmental Systems on
Workstations

10 ROTH, O., DERRON, J., FISCHLIN, A., NEMECEK, T. & ULRICH, M. (1992): Implementation
and Parameter Adaptation of a Potato Crop Simulation Model Combined with a Soil Water
Subsystem

1 1* NEMECEK, T., FISCHLIN, A., ROTH, O. & DERRON, J. (1993): Quantifying Behaviour Sequences of Winged Aphids on Potato
Plants for Virus Epidemic Models

12 FISCHLIN, A. (1991): Modellierung und Computersimulationen in den Umweltnaturwissen-
schaften

13 FISCHLIN, A. & BUGMANN, H. (1992): Think Globally, Act Locally! A Small Country Case
Study in Reducing Net CO2 Emissions by Carbon Fixation Policies

14 FISCHLIN, A., GYALISTRAS, D., ROTH, O., ULRICH, M., THÖNY, J., NEMECEK, T.,
BUGMANN, H. & THOMMEN, F. (1994): ModelWorks 2.2 – An Interactive Simulation
Environment for Personal Computers and Workstations

15 FISCHLIN, A., BUGMANN, H. & GYALISTRAS, D. (1992): Sensitivity of a Forest Ecosystem
Model to Climate Parametrization Schemes

16 FISCHLIN, A. & BUGMANN, H. (1993): Comparing the Behaviour of Mountainous Forest
Succession Models in a Changing Climate

17 GYALISTRAS, D., STORCH, H. v., FISCHLIN, A., BENISTON, M. (1994): Linking GCM-
Simulated Climatic Changes to Ecosystem Models: Case Studies of Statistical Down-
scaling in the Alps

18 NEMECEK, T., FISCHLIN, A., DERRON, J. & ROTH, O. (1993): Distance and Direction of
Trivial Flights of Aphids in a Potato Field

19 PERRUCHOUD, D. & FISCHLIN, A. (1994): The Response of the Carbon Cycle in Undisturbed
Forest Ecosystems to Climate Change: A Review of Plant–Soil Models

20 THÖNY, J. (1994): Practical considerations on portable Modula 2 code

21 THÖNY, J., FISCHLIN, A. & GYALISTRAS, D. (1994): Introducing RASS - The RAMSES
Simulation Server

* Out of print

Erhältlich bei / Download from
http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

Diese Berichte können in gedruckter Form auch bei folgender Adresse zum Selbstkostenpreis bezogen werden /
Order any of the listed reports against printing costs and minimal handling charge from the following address:

SYSTEMS ECOLOGY ETHZ, INSTITUTE OF TERRESTRIAL ECOLOGY
GRABENSTRASSE 3, CH-8952 SCHLIEREN/ZURICH, SWITZERLAND

22 GYALISTRAS, D. & FISCHLIN, A. (1996): Derivation of climate change scenarios for
mountainous ecosystems: A GCM-based method and the case study of Valais, Switzerland

23 LÖFFLER, T.J. (1996): How To Write Fast Programs

24 LÖFFLER, T.J., FISCHLIN, A., LISCHKE, H. & ULRICH, M. (1996): Benchmark Experiments on
Workstations

25 FISCHLIN, A., LISCHKE, H. & BUGMANN, H. (1995): The Fate of Forests In a Changing
Climate: Model Validation and Simulation Results From the Alps

26 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: Derivation of methods

27 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: A comparison of methods

28 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Aggregation of Individual Trees and Patches
in Forest Succession Models: Capturing Variability with Height Structured Random
Dispersions

29 FISCHLIN, A., BUCHTER, B., MATILE, L., AMMON, K., HEPPERLE, E., LEIFELD, J. &
FUHRER, J. (2003): Bestandesaufnahme zum Thema Senken in der Schweiz. Verfasst im Auftrag
des BUWAL

30 KELLER, D., 2003. Introduction to the Dialog Machine, 2nd ed. Price,B (editor of 2nd ed)

http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

