R —®

- SYSTEMOKOLOGIE ETHZ
SYSTEMS ECOLOGY ETHZ

Bericht / Report Nr. 24

Benchmark Experiments on Workstations

T.J. Loffler, A. Fischlin, M. Ulrich

November 1996

Eidgendssische Technische Hochschule Zirich ETHZ

Swiss Federal Institute of Technology Zurich

Departement fur Umweltnaturwissenschaften / Department of Environmental Sciences
Institut fiir Terrestrische Okologie / Institute of Terrestrial Ecology

The System Ecology Reports consist of preprints and technical reports. Prepianislese
which have been submitted to scientific journals and are hereby made availalikré¢sted
readers before actual publication. The technical reports allowariorekausive do
cumentation of important research and development results.

Die Berichte der Systemoékologsend entweder Vorabdrucke oder technische Berichte.
Vorabdrucke sind Artikel, welchbei einer wissenschaftlichen Zeitschrift zur Pkdiion
eingereicht worden sind; zinem mdoglichst frihen Zeitpunkt sollen damit dieséeiten
interessierten Leserinnen besser zuganglich gemacht werDén.technischen Be&hte

dokumentieren erschopfend Forschungs- und Entwickieegkate vonallggmenem
Interesse.

Adresse des Autors / Addresse of the author:

T.J. Loffler/ A. Fischlin/ M. Ulrich

Systems Ecology

Institute of Terrestrial Ecology

Department of Environmental Sciences
Swiss Federal Institute of Technology ETHZ
Grabenstrasse 3

CH-8952 Schlieren/Ziirich

Switzerland

e-mail: loeffler@ito.umnw.ethz.ch

© 1996 Systemdkologie ETH Zirich

Die

mailto:loeffler@ito.umnw.ethz.ch

Benchmark experiments on workstations 1

Benchmark Experiments on Workstations
T. J. Loffler, A. Fischlirt, M. Ulricht

Systems Ecology, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology

CONTENTS
1. INTRODUCTION...ctttteeeeeee st e et e e e mmns e e e e s e s eesemnnsssssssssssssneeeeeeeaeesemnmsseeeeeees 1
2. MATERIALS AND IMETHODS.uutttttttiiitieeiteeesieesseseeeeeeetaaaaaaaaesssssammmeasessasssssnsannnns 2
2.1 Machines, Compilers, and Compiler OptianS.............ceviiiiiieeeeecceiie e, 2
2.2 Standard Benchmark TeSIS........cooiiiiiiiiiiiiiieee s 4
2.3 TSt CONAITIONS. ..cceiiiiiiiiiiiiiee e eeete bt e e e e e eeen e e e e e e e e e e e e e e eeeeeananeeeeas 8
2.4 Benchmark AlgOrthmM........ouuiii e eaand 9.
2.5 Sensitive TeStS anNd ACCUIACY.cuuuuiieeeeeeiiirinieeeeeeeriiseeeseessimmmeesreeeseennnd 9
2.6 Standard Benchmark Tests with the Application Speedometer.................... 10
3. RE SULT S ittt ettt e eeeee ettt ettt et e e aaeeeaeeeammt e e e aeeaeeeeeee e e e e e e e annnneeeaeeeanaannns 10
3.1 The new benchmark teStS.cooeeiiiiiiiiieeee e 11
3.2 The Benchmark Tests by the Application Speedometer..............cccoevveaeeeen. 33
A, SUMMARIZE ...ceeiiiiie et e e ettt e emet sttt ettt ettt e et e e e e e e e e eant e e e e e e e e as 34
T BT 1 11 [P 37
APPENDIX. ..ttt et eeess sttt ettt et e e e e e e e e amat et e e e e e e e e e e e e e e e e e a e mnne e e e e e e e nnnnnnne 42
A. The early benchmark testS............oiiiiiiiiiiie e 42
B. Benchmark programs..............ceiiiiiiiiiiemeiiiiiii e eesvveene e seennne e 48
ACKNOWIEAGEMENTS.....coiiiiii e e e e e e e aaaamens 49

1. Introduction

This paper deals with classical benchmark tests, which are one importafur phee per
formance evaluation of computers as well as of complex software.

Benchmark results can be used to test either specific functionality of compilecastsgof
integer and real multiplication, the general performance of the combination mactdne
operating system as well as the performance of applications within a simelatioorment
as e.g. RAMSES(Fischlinet al, 1988; Keller, 1989; Fischlin, 1991; Fischéhal, 1994)

Here, we focus otesting the overall performance of the machines with benchmark pro
grams. Our aim is to get information abolé run-time behaviour of different platforms
(computers, operating systenasid emulations) and to compare the results with the per

* Systems Ecology, Institute of Terrestrial Ecology, Department of EnvironnSsieaices, Swiss Federal
Institute of Technology ETHZ, Grabenstr. 3, CH-8&shlieren Zirich, SWITZERLAND.

T Swiss Federalnstitute for Environmental Science and Technology (EAWAG), CH-8B08bendorf
Switzerland

1 RAMSES is an acronym f@esearchAids for theModelling andSimulation of EnvironmentalSystems.

Benchmark experiments on workstations 2

formanceexamnations of the simulation software RAMSES and its batch version RASS
(Thényet al, 1995) which is treated in a separate regasffler & Fischlin, 1997) The
results will giveessential infanation for the latter assessment, even though they may neit
her be accurate nor optimal.

For instance, to such aims these data about computers and software are necessary for

» the decisions which platforms should be preferred forfuhee development of
RAMSES and RASS;

» potential performance improvements of RAMSES and RASS;

The presented benchmark experiments tie on a long tradition of estabiestadnark tests
(Wirth, 1981)with the advantage that we are able to comparevtitde collected material
and get results out of a long expertise in these benchmark tests.

Nevertheless, we concentrate mainly to the new and thus for oureléwant benchmark
experiments. Therefore the results of the older benchmark experiarentoncentrated
shortly in the appendix A.

2. Materials and Methods

2.1 Machines, Compilers, and Compiler Options

The computers tested in thast are mainly those which are available at the ETH Zirich at
that time and the computers which we used for the actual benchmark tests arefteralay
used machines.

The late benchmark tests were performed on six Maci@todithree SUN workstations as
well as on two IBM workstations. The characteristicthef used machines are summarized
in the following three tables 2.1 to 2.3.

MacintosH IIfx Quadra |Quadra |PowerPC| PowerBook | PowerBook
700 950 8100/80 | 170 520 and 540

CPU MC68030 [MC68040 | MC68040| PPC601 | MC68030 | 68L040
(CISC) (CISC) (CISC) (RISC) (CISC) (CISC)

FPU MC68882 | Integrated| Integrated| Integrated| MC68882 [no

Rate 40 MHz |25MHz |40 MHz |80 MHz |no infor-|66/33 MHz

mation
System 7.01 7.01 7.01 7.12 7.01 7.11

2 RASS is an acronym f®RAMSESSimulation Server.

Table 2.1: Characteristic data of the tested Macintosh machines.

Benchmark experiments on workstations 3

SUN workstations] SPARCstation 10| SPARCserver 630 MP SPARCstation ipx
CPU SuperSPARC | 2 x SuperSPARC | FIMB86903
FPU Integrated Integrated Integrated

Rate 40 MHz 40 MHz 40 MHz

System Sun0S 4.1.4 | SunOS 4.1.2 Sun0S 4.1.2

Table 2.2: Characteristic data of the tested SUN workstations.

IBM wokstations| Intel 486 Intel Pentium

CPU 80486 Pentium

FPU 80487 (ntegrated) Integrated

Rate 66 MHz 90 MHz

System DOS 6.21/Windows 3.IDOS 6.21/WFW 3.11

Table 2.3: Characteristic data of the tested IBM workstations. "WFWf' ebbreviation for "Windows for
Workgroups".

We used the programming languages Modula-2, Pascal, and Qlifférent compilers
(cf. tab. 2.4), depending on the used platform.

Modula-2 C Pascal
Macintosh MacMETH V3.2.4 MPW C V3.3
SUN em2 VvV2.0.8 gcc/g++ V2.4
Workstation
IBM Workstation Borland Pascal V7.(

Table 2.4: The used combinations of compilers and platforms.

Benchmark results are dependent on the hard-software configuration of the tested-ma
chines. For example atmail system can strongly influence the execution of programs,
dependent e.g. on how often the mail server is contdotedew mail. This can strongly
distort the benchmark results. Hence, to get comparable information we configuted the
sted computers similarkyith respect to such applications, thésidedeft the machines in
their normal working state because we were interested in tasengomputers as they
mainly were ineveryday use. Therefore, we did not test optimized machines but siandard
zed ones which are in practical use. That means, the end user of the machinesais the
perspective of the benchmark tests.

The used Modula-2 compiler MacMETH V3.2\irth et al, 1992)is able to generate na
tive code for the Motorola CIS@rocessor family MC68. The MacMETH compiler
Compile generate native code for this CPU type (cf. tab. @ntl) the MacMETH comfar
Compile20 additionally supports the FP(¢f. tab. 2.1) of these processor family, i.e.
Compile20 generate code for the MC68020 processor ramdon hardware platforms
equiped with théiC68020/MC68881, the MC68030/MC68882, or the MC68040 proces
sor. The compile€Compile40of MacMETH which generateative code for the MC68040
processor was not tested. Therefore, on the machineswakha FPU only native code for
the FPU MC68020 was executed, i.e. the [Pld.g. the Quadra 950 was not tested in its
fastest mode.

MacMETH V3.2.2 is not able to generate natbeele for the RISC processors used by the

Benchmark experiments on workstations 4

PowerPC family. Hence, all results produced on the téxdedrPC 8100/80 do notfiect
the true abilities neither of this machine nor of the PowerPC family in general.

The integer overflow and, except for the subtest h ahe jrange checks were disabled. All
traps were enabled and for SANE all checks were enabled exceptveheptions
‘'underflowHalt' and ‘inexactHalfWVirth et al, 1992)

On the SUN workstation thEPC Modula-2 compiler em2 V2.0.8 was used with the
compiler options which enable the detection of range errors.

The information which are necessary for working with debugger and the profiler was
not produced. During theompilation and linking 1) the production of all post mortem
diagnostics were suppressed adal possible range checks were enal§iedC, 1991)

For the MPW C V3.3 compiler the Appldsguage extensions were enabled. The genera
ted codenvas optimized for speed, but with no loop unrolling and without repeating global
propagation andedundant store eliminatiofApple Computer, 1993b; Apple Computer,
1993a) No native code for the PowerPC 8100/80 was generated.

For the GNU compiler gcc/g++ V2.4 the information which are necessary for wavking
the debugger and the profiler was not produced. The benchmark prograxomydsed and

linked with an optimization level 2. For a descriptrefer to the GNU manugfoundation,

1993)and to the man pages. The generated code was not optimized footkessors of
SUN workstations.

With Borland Pascal V7.0 native code for the 80286/80278 Qi®Cessor of Intel was
generated from the benchmark programs. Information for the debuggéreapibfiler was

not produced. Range, stack, pointer, and overflow checks were disabled, and I/O checks
were enabled. For the subtests h and j the range checks werenatded (Borland
International, 1992)

2.2 Standard Benchmark Tests

We define the benchmark test in a traditional way as a set of instructions which measures
how well the hardware and software of a computer system perform togetrestally,
benchmarks caeither test individual, specific functions of a compiler or operating system
(e.g. function-call overhead) or they can test the geper&rmance of the machine by-ex
ecuting a number of operations (e.g. looping, searching etc.).

Such measurements can be executed in two ways, by
» counting the number of operations executed within a fixed time;

» fixing the number of operations and stopping the time wthehprogram needs
for the execution;

We preferred the first version wherebytie earlier tests a human monitored and raoger

ted the computation after a fix defined run-time, for example after 100 se€andbe new

tests wegave this control to the benchmark program and were therefore able to run the
benchmark application at times whéine machines usually are not used and hereby to run
more tests.

The earlier tests used the traditional benchmarkgeth, 1981)which isshortly desched
in table 2.5. By this test set the basic operations which are oftenirusedgrogram is
covered.

Benchmark experiments on workstations 5

Test (also used) Short description of the benchmark tests
a (1) Empty REPEAT

b (2) Empty WHILE

C (3) Empty FOR

d 4) Integer arithmetic: (x * y) DIV (z + u)

e (5) Real arithmetic: (x *y) / (z + u)

f (6) SIN, EXP, LN, SQRT

g (7) Array access a[]=b[], b[]=a[]

h (8) Test g with bounds tests

[9 Matrix access a[][]=b[][]

| (10) Test i with bound tests

k (11) call of an empty procedure

I (12) call of an empty procedure with 4 parametgrs
m (13) Array copying

n (14) Access via pointers

0 (15) Reading a disk stream of integer values

Table 2.5: Short description of the traditional benchnests which includes often used compiler instruc
tions and integrated functions. These tests cover the basic operations which are often used in a program.
Note, in figures 3.1 to 3.4 the numbers 1 to 15 are used instead of a to o.

Beside the tests listed in table 2.5 we performeddaiitional class of tests which was €ho
sen to get more detailed information about widely used tipesa This additional testet is
shortly described in table 2.6.

This additional test class was introduced because the resfiits dlenchmark experiments
with RAMSES model-definition-programs (MPDs) as the stochastic forest model
FORCLIM (Bugmann1994; Bugmann & Fischlin, 1994y the deterministic forest model
DISCFORM (Lischkeet al, 1996) revealed that beside the traditional benchmark test set
additional tests are advantageous to assess the run-time behavibw@s®f programs.
Therefore, we inspect the run-time behaviofirsome few procedures as e.g. sinus or
square root computation which seems essential to our aims. Thizamatéhis additional
benchmark test set can help to interpret the run-time measurements or to impnoee the
formance of model-definition-programs (MPDBharticularly, this selection is mainly-re
stricted to our special aims and hence not representatively chosen.

Benchmark experiments on workstations 6

Test (also used)Short description of the benchmark tests
N1 (16) Empty loop with fast computation of i ;= i-[l
N2 (17) Sinus function

N3 (18) Arcus tangens function

N4 (19) Exponential function function

N5 (20) Natural logarithm function

N6 (21) Square root function

N7 (22) Type conversion: real to longint

N8 (23) Random (integer) number generation
N9 (24) Random (real) number generation

N10 (25) Absolute function

N1l (26) Type conversion: real to integer

N12 (27) Type conversion: integer to real

N13 (28) Power (x*r, x and r real)

N14 (29) Power (x"i, x real, i integer)

N15 (30) Maximum of two real values

N16 (31) Maximum of two integer values

N17 (32) Access of real values

N18 (33) Reading a disk stream of real values

Table 2.6: Short description of the additional benchmark set which includes often used robésesddi
tional test set is arranged for special purposes of RAMSES model-definition-programs (MDiPg)efocke
not representatively chosen.

Note, in figures 3.1 to 3.4 the numbers 16 to 33 are used instead of N1 to N18.

Because of incompatibilities afifferent programming languages some language features
hadto be replaced by equivalent constructions. For example, type conversion from integer
to real variables hawe be made explicitly in Modula-2 by the proced&teOAT whereas

in C this conversion can be made explicitly by the op&rator(int) or implicitly by the
conpiler. Such differences as explicit or implicit type conversion are summaritiee teb-

les 2.7 and 2.8.

For the programming languages Modula-2 and Pascal we folldweetiplementation of
Wirth (Wirth, 1981)because of possible comparisons of the long series inlibaskmark
tests, whereas for the language C there is no such restriction. fente comparisons of
the resultgained by the C and Modula-2 benchmark test, the differences of the imple
mentations which are described in the following has to be in mind.

For the traditional benchmarks the differences between the ModBks@al, and C vsion
are minimal. They consist in the use of the

e operators-i and++i in C vs.i:=i-1 andi:=i+1 in Modula-2 and Pascdbr
couning the loops in the subtesiso 0. The measurements for the C benchmark
version showed that it doesn't matter whether the opetatoror i=i+1 respective
--i ori=i-1 is used (cf. tab. 3.18).

» system proceduneadin Pascal vs. proceduf@etintfrom the Module DMFiles
of the Dialog Machine V2.AFischlin, 1986; Vancso-Polacseit al., 1987,
Fischlin et al, 1988; Keller,1989; Fischlin, 1991; Fischliret al, 1994)in
Modula-2 vs. the brary proceduréscanfin C for the subtest Feading disk stre
ams);

Benchmark experiments on workstations 7

* element wise array copying in C vs. direct arcapying (by the construction
arrayl[] := array2[]) in Modula-2 and Pascal for subtest m;

» do while loop in C vs. repeat until loop in Modula-2 and Pascal feuallests ex
cept the subtest c;

Test no. | Modula-2 Pascal C
atoo i=1-1; such as Modula-2 | --i;
candd =i+ 1 such as Modula-2 | ++i;
a,b,dtoo |repeat...until... [suchas Modula-2 |do{...}while (not...)
m arrayl := array2; [such as Modula-2 |for (...)

{arrayl][] := array2[]}
0 Getint (...); read (...); fscanf (...);

Table 2.7: Summarization of the differences betweemptbgramming languages Modula-2, Pascal, and C
in the additional benchmark test set.

The measurements for theb@nchmark version showed that it doesn't matter whether the opetator
i=i+1 respective-i ori=i-1 is used (cf. tab. 3.18).

Another difference are the compiler options whach different for the used compilers. We
used the available compiler options for avoiding array index-, subrange-, pointehestks
to perform the tests h and |.

For the additional test class, tH#ferences between the benchmark versions for the lan
guages (cf. tab. 2.8) Modula-2, Pascal, and C stem from not existiltgn functions of
the compilers as well as from testing library procedures. For sas&s, library procedes
were not available and hence had to be defined in the benchmark programs.

For the Modula-2 benchmark version we took the procedures Randoni@eapmint,
POWER, POWERI, Rmax, Imax, and GetReal from the Dialog Machine V2.2.

The results coming from these benchmark versions are used to get an immetseodif
ference in the run-time behaviour of Modula-2 vs. C and to compare the IBNh&itBUN
workstations.

Benchmark experiments on workstations 8

Test No. | Modula-2 Pascal C

N7 Entier Round (int) floor

N8 Randomint Trunc (Random) (int) rand

N9 RandomReal Random rand

N11 TRUNC such as Modula-2 (int) ceil

N12 FLOAT implicit type conversior) implicit type conversior
N13 POWER RPot () pow (real,real)
N14 POWERI RIPot () pow (real,int)
N15 Rmax dMax dMax

N16 Imax iMax IMax

N18 GetReal read fscanf

Table 2.8: Summarizatioof the differences between the Modula-2, Pascal, and C benchmark versions of
the additionally mesured tests. The procedures which arersétalic are standardly implemented in the
benchmark program.

These additional tests were introduced to obtain more dattetpret the run-time measurements or te im
prove the performance of RAMSHSodel-definition-programs (MDPs). Particularly, this selection is
mainly restricted to our special aims and hence not representatively chosen.

2.3 Test Conditions

For a good evaluation ebmputer systems, different factors must be taken into considera
tion which can stronglinfluence the programmer's productivity. Therefore the aims of the
new benchmark examinations aj@te numerous. Beside the run-time behaviour of differ
ent platforms, programming languageswell as the contrast of constructions such as dif
ferent loops in Modula-2 vs. in C or one- vs. two dimensi@medy handling etc. (cf.
tab. 3.2 and 3.18), we are interested in features such as measuring the effects of the

e SANB library of Apple(Apple Computer, 1986)

» extended compiler of MacMETKWirth et al, 1992) which generates native code
for the MC68020, MC68881/2, and MC68040 co-processor,

» optimized library DMMathLibFof the Dialog Machine V2.2 for the co-proees
sors MC68020, MC68881/2, and MC68040;

» system extensions which are included in the system of a Maciotosputer to
extend the functionality of a Macintosh. These extensawasexecuted as back
ground processes which can affect the run-time behaviour of applications.

* network. For example, the effeat programs such as e-mail which periodically
contact a server via a (local) network can strongly influgineeun-time behaour
of applications.

* FPU software emulation for the PowerPC 8100/80 combined with non-catiee
applicdions which needsa co-processor. This FPU software emulates a
mathematical co-procssr which is not included in some computéitse avaable
FPU softvare for these tests is the shareware SoftwareFPU \&02/3.03 as
well as PowerFPU V1.01,

3 SANE is an acronym fdtandardApple NumericEnvironment.

Benchmark experiments on workstations 9

» the SANE library of Apple for the PowerPC 8100/80.

2.4 Benchmark Algorithm

For each subtest ato o respective N1to N18 the benchatgokithm déermines the
number of iterations which can be exactly executed given (fixed) run-timdsix, e.g. 100
seconds. This number of iterations is iteratively calculated by the formula

N = Ng—1 * Tfix / Atg—1, K > 1

with Atx—; the measured run-time. The finite sequefit®x>o of iteration numbers starts
with the chosewalue Ng and closes with a numbéy for which the criteriortsix = Aty is
fulfilled.

2.5 Sensitive Tests and Accuracy

The benchmarks are affected by errors of the time measurement. By givicgntha of

this time measurement to tbenchmark program we eliminated the errors coming through
theunreliability of stopping the time by hand. As a consequence of the time measurement
algorithm described above, the best relative accuracy we can get is given by the formula

Arel = Aabs! tiix, (2.1)

with agpsthe absolute accuracy, akg is the fixed time for which we want to know how
many iterations of each subtest can be executed.

The absolute accura@gpsof thetime measurement is one second, due to the implementa
tion of the Module DMClock of thBialog Machine V2.2. Hence we have a maximal-rela
tive accuracygyg| of

e 1% for tfx = 100seconds;
e 0.2% fortx = 500seconds;

For most subtests the time was fixed @ seconds, but for some sensitive test to 500 se
conds. By sensitive tests we mean those whose effects on the mygpadrrepetitions (of
each subtest) fdfx = 100 seconds are hardly to recognize, i.e. in the order of raimni

of the relative error. Then we try to minimize the error by increasing thdgime

Afterwards, the result of these sensitive benchmark testsneemealized to 100 seconds in
order to be able to compare these results with tests under other conditions, too.

Mainly, the results of the subtests show a clear trenccandhus directly be interpreted
and comared. For sensitive tests in the contrary it is not always possitbenjoare the re
sults of thalifferent subtests in this way. For such cases we used the criteria described in
the following.
The number
€el = Nrun* (Qabs/ tix) = Nrun* el (2.2)

is an estimation of the error band width of the benchmark measurement, whegelsythe
measured number of iterations of a subtest which is exesittéd the timetsix. To get an

Benchmark experiments on workstations 10

impression whether the differencetafo runs is significant related to the er@g, that
means to find out if there is a recognizable effect in the measurement, we use the relation

l'rel= 100+ (Nryre - Nrunt) / €reln (2.3a)

which is an estimation (ipercent) for how many times faster or slower the run was under
the different conditions, i.e. whether tbdgference ANyyn = Nyyrp - Ny IS @ signiicant
measurement related to the error band wejth of the iteration numben,yn. Thereby
Ny andneyrp are the measured numbers of iteratioha subtest under different conditi
ons, which are executed within the tifyg. For our purposes we use the following two
numbers

Fetfect= I'rel / 100 (2.3b)
and Isign = sign(effec)- (2.4)

Thus, ifrefiect™> 1 we can assume that we measured an effect and thettedotee run with
iteration numben,yrp is measurably fastehan the run with the iteration numbBfm.
Otherwisewe assume that the measured difference lies in the error band width of the first
run.

The numbersjgn shows whether the second run was fastgg{> 0) or slower (sjgn < 0)
and defines therefore the border of significatgséct = 1) for the different runs.

2.6 Standard Benchmark Tests with the Application Speedometer

The Application Speedometer V4.02%¢ott Berlfield offers different standard benchmark
tests for Macintosh computers such as Quicksort, Queens, Sieve etc.
We included tests with this application for Macintosh computers, too.

Tests with Speedometer V4.02 can not be taken too seriously, because thi¢ghsource

code of this application it is impossible to make a decision d@heujuality of the resulting

benchmarks. Nevertheless, these tests can help to completaser the view of the tests
with our own benchmark program.

The results from these tests are summarized in chap. 3.2.

3. Results

We give a summarization of the results of the benchmark tests compl¢tedlast decade.
Thereby, theolder benchmark test results are treated into the appendix A in a short and
compressed way without graphical representations and statistical analysis of the data.

The new benchmark results are completely described in this chapterré@sidse are gen

in absolute speed, measurmachumber of iterations within the tintgy of 100 seonds, or

in percent speedecause of the large amount of data coming out of the many benchmark
runs, we extracted the results into mean vaMef the percentage values) if thisjis-

tified by the behaviour, i.e. significant results of all subtests with respect to the error band
width. Otherwise we give the additional information of the differences in these subtests, too.

Benchmark experiments on workstations 11

The extraction of the data are accomplished in two ways. First, we use the meawnfvalles
sultests of a tested machine and compute by the equation

M =100 * IVltest/ Mreference (3.1)

how many times faster or slower a run is. The faktaepresents thgercentage relation of
Miest (mean of the test over all subtestsMgeference(Mmean of the testver all reference
subtests)Meferencels the reference to which the vallvbestis related.

Second, the difference efach subtest ato o and N1 to N18 between the berkhtest
series on several machines or on the same machinedifidegnt conditions are computed
by the formula

Dsubtest: 100 ~* Smachine/ Sreference‘ 100 (3-2)

whereSeferencels the reference to whighe valueSyachineis related. The numbddgyptest
represents the absolute gainloss of speed in percent. Note, formula (3.2) can be written

aSDsubtest: 100 * (Snachine/ Seference‘ 1) =100~ (Smachine' S(eference) /Seference

Then, the presented valuestbé benchmark test series are the mean, standard deviation,
minimum, and maximum of the valuBXptestof all subtests.

3.1 The new benchmark tests

First, we extracgeneral statements (cf. chap. 2.3) from the two benchmark test sets (cf.
tab. 2.5 and 2.6). Therefore we use the data obtained byetirehmark run (Modula-2
version ofthe benchmark program) on a Quadra 700, whereby this benchmark test is per
formed by the combination Sane on/Comile20 offfDMMathLib (cf. tab 3.4 and tab. 4.5).

Benchmark experiments on workstations

12

Test No. of iterations Test No. of iterations
a 272747475 N1 351160000
b 271840000 N2 305556
C 223020000 N3 420792
d 40623762 N4 228500
e 1790000 N5 390909
f 75000 N6 390594
g 52950495 N7 1445000
h 30772277 N8 686500
[3859 N9 1955941
i 2605 N10 223030303
k 82020000 N11 271020000
I 66100000 N12 204110000
m 1145000 N13 131111
n 2192500 N14 1210303
0 378788 N15 8616162

N16 52484849

N17 115930000

N18 248485

Table 3.1: This table shows the absolute number of iterations which could be efecegsth subtest (cf.
tab.2.5 an@®.6) for tfix = 100 seconds on a Quadra 700 running the Modula-2 version of the benchmark
program. This benchmark test is performedtyy combination Sane on/Comile20 off/ DMMathLib (cf.
tab. 3.4 and 4.5).

The table 3.2 contains information about various differentdbe run-time bleaviour of
program constructions as e.g.dfferent loop constructions, using compiler options for
checkingranges etc. In each group we used eq. 3.1 and refer to the slowest run as 100%.
For the comparisoaf one dimensional array vs. multi-dimensional array access and array
vs. list access the differemiplementations related to the assignments of variables of these
subtests has to be taken into account.

Refer to table 3.18 which contains the same information for the C benchmark test.

Benchmark experiments on workstations 13

compiler opti- | type conversion [l loops 11
ons

g-nooptions| 172 |N12 18756 (N1 158
h 100 N11 14125 |la 129
I-nooptions | 148 |[N7 100 ||b 122
| 100 C 100
integer vs. real IV built-in function \Y integer vs. real VI
disk streams Inc(i) arithmetic

0] 152 |fa 129 || d 2270
N18 100 |[N1 100 [le 100
procedure VIl || 1-D array vs. VIII array vs. pointer IX
calls 2-D array

k 124 |lg 137 |9 1208
I 100 |fi 100 |[n 100

Table 3.2: This table contains in nine bokds 1X informationabout various differences of the run-time
behaviour of program constructionstire programming language Modula-2 in percent (cf. eg. 3.1) to the
slowest run in each group which is the reference, i.e. 100%. These data are extracted from table 3.1.
Refer to table 3.18 which contains the same type of data for the C benchmark test.

Second, we present the data of the tests executedvard®rs conditions (cf. chap. 2.3) as
using the SANE library or not etc. We examined the most impoctanbinations of the
options SANE on/off, using Compile/Compile20 of MacMETH and the library
DMMathLib/DMMathLibF from theDialog Machine V2.2. The runs were performed in
the programming language Modula-2 (by the compiler MacMETH) on a Quadra 950.
Table 3.3 shows the absoluata for the most important combinations of these options,
whereas table 3.4 shows the mean value of the subtests in percifiéagace (cf. eq. 3.2)
related to the option combination SANE on/Compile20 off DMMathivtich performed

the slowest run.

Benchmark experiments on workstations

Test no.| SANE on SANE off SANE off SANE off
Compile Compile Compile20 Compile20
DMMathlib DMMathlib DMMathlib DMMathlibF

a 405959616 405959616 | 407386144 | 406039616

b 328282848 325000000 | 361346528 | 363757568

c 362646464 364424224 | 327100000 | 327100000

d 54636364 54636364 54636364 54090000

e 2370000 6010000 47590908 47590908

f 95959 213636 220202 1448514

g 71070712 70840000 88019800 88237624

h 41780000 41780000 48222224 48222224

i 5344 5315 5805 5805

j 3415 3429 3692 3655

k 112217816 112316832 | 112202024 | 112316832

| 87801976 87801976 90900000 90900000

m 1516500 1521717 1521782 1521717

n 2923500 2923500 2684500 2698500

0 479797 485000 485000 479797

N1 465900992 465979776 | 409737376 | 408747488

N2 389899 866666 936633 4950495

N3 563131 1472772 1472772 5136363

N4 291584 628282 692929 4590000

N5 509595 1373762 1373762 4440000

NG 514851 1320297 1320297 21075500

N7 1906565 2775757 2775757 45356060

N8 801000 1240000 1268811 10787879

N9 2600495 4427272 4672277 14903000

N10 297420000 294475264 | 272606048 | 272606048

N11 361188128 361683168 | 326217824 | 326404032

N12 270722784 270722784 | 271128704 | 273430016

N13 163000 341400 334600 334600

N14 1626666 3541800 3539400 3541800

N15 11405941 27696970 27696970 27696970

N16 69220000 69545456 69545456 69545456

N17 163360000 172868688 | 171140000 | 172868688

N18 303030 296000 298989 296000

14

Table 3.3: This table shows the absolute number of iterations whichlmelxecuted for each subtest for

tfix = 100 seconds for essentipbssibilities of mathematical choices. These choices are SANE on/off,

using Compile/Compile20 of the Modula-@ompiler MacMETH, and the libraries DMMathLib/
DMMathLibF of the Dialog Machine V2.2.

Benchmark experiments on workstations

DMMathLi DMMathlibF
b
Compile20 [Compile20 | Compile20
on off on
SANE |on 61 0 476
SANE | off 106 40 498

15

Table 3.4: Results of different optioBANE on/off, Compile20 on/off, and DMMathLib or the fast-ver
sion DMMathLibF for the benchmark tests. These resuithe mean value of the subtests in percentage
difference (cf. eq. 3.2) given in tab 3.3. The results are relatethe option combination SANE
on/Compile20 off DMMathLib (bold faced in the table) whishchosen as reference value because this
combination performed the slowest run.

For example, the combination SANE off/Compile20 on/DMMathLib is in mean 1aé#r than the refe
rence.

These three options (SANE on/off, using Compile or Compile20, and using DMMathLib
the fast version DMMathLibRre essential for mathematical operations using MacMETH
and RAMSES. However, the mean valoésable 3.4 include all subtests, i.e. mathematical
and non-mathematical one€Bherefore, in table 3.5 we look only to thehbeiour of the
mathematical subtests f, N2 to N7, N13 and N14 (cf. tab. 2.5 and 2.6), tigisgme view
such as in table 3.4.

DMMathLib DMMathLib | DMMathlibF
Compile20 | Compile20 | Compile20

Test no. SANE | on off on
f: Combination of on 1908 0 1883
mathematical functionsoff 1908 154 1908
N2: Sinus on -12 0 -12
off -13 0.02 -12
N3: Arcus Tangens |[on 2 0 1158
off 140 122 1170
N4: Exponential on 0.18 0 811
function off 162 162 812
N5: Logarithmical on 1 0 1481
function off 138 116 1474
N6: Square root on 2.04 0 769
off 170 170 771
N7: Type on 0 0 3953
conversion off 156 156 3994
N8: Power with on 0 0 1
real values off 0.15 0 1
N9: Power with on 1 0 4
integer values off 105 110 105

Table 3.5: Results of different options for the benchmark tests fondktigematical subtests from tab 3.3.
These results are given in percentage difference (cf. eq. 3.2) related dptilie combination SANE
on/Compile20 off/ DMMathLib (bold faced in the table) which is the reference of table 3.4, too.

For examplefor the subtest N6 (square root) the combination SANE on/Compile20 on/DMMathLibF is
769% faster than the reference.

Benchmark experiments on workstations 16

Third, we examined the influence of extensions (cf. chap. 2.3) used by a Macintostaand of
network connection (cf. chap. 2.8h the run-time of the benchmark program. The runs
were designedavith benchmark program written in the programmingglaage Modula-2
(using MacMETH) on a Quadra 700.

We give the mean, standard deviation, minimum, and maximum value over all sabtests
results in table 3.6 and by the graphics 3.1, 3.2 arfdi&8how the value$yend andrsign

(cf. chap. 2.5) for all subtests.

The results of the subtests under the different conditiomslifficult to interpret even if we
run the tests witltsix = 500 seconds; they are for sormgbtests small, for others rather big
and for some subtests they are positive and for ottegyative so that they might be due to
the error in the time measurements (cf. eq. 2.2).

This is regognizable in the graphics 3.1, 3.2, 23dwhich look closer into the teststdts.
We detectthat the high gain in run-time is contributed mostly from thdheraatical
subtests.

No extensions | Unconnected to a| No extensions,
network unconnected to a
nhetwork
Mean 396 29 1
Std Deviation 836 55 6
Min -18 -10 -15
Max 3894 165 23

Table 3.6: The influence of extensions (cf. chap. 2.3)péte@ork connection, and both: using extensions
and being conected with a network, for a Macintosh Quadra 700. The run-time behaviter bénchmark
program is measured as mean run-timheall subtests (cf. chap. 2.2, tab. 2.5, and 2.6) in percent (cf.
eq. 3.2) related to using extensions and being connected to a network.

For example, the measurements yield that not wesitension increase the run-time in mean of about 396
percent.

4 |n these graphics the subtests muenbered from 1 to 33 which represent the marking a to o and N1 to
N18.

Benchmark experiments on workstations

40 -
30
20+
10 -

0

10

Figure 3.1: The valud&sytect (cf. €. 2.3b) represented by bars diggh (cf. eq. 2.4) repre
sented as line with squares show for each subtest (cf. chap. 2.2, tahd?2255) the measu

red differences between usiegensions or not (cf. chap. 2.3). The squares lying at 1 or -1
give also the border for which the subtests can be assumed as significant(ydfster> 1)

or slower (values < 1).

For example, the mathematical subtests f, N2 to N7, N13, andé¢id to performe faster
for the configuration "not using extensions". Since the results passed the bhgidethey

are assumed as significant.

Note, the subtests a to 0 and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).

-1

Figure 3.2: The valud§(cf. €g. 2.3b) represented by bars digg, (cf. eq. 2.4) repre
sented as line with squares show for each subtest (cf. chap. 2.2, tadn@® 3.6) the measu
red differences between being connected to a network or not. The squares lying htgive
also the border for which the subtest® be assumed as sigeéfntly faster (values > 1) or
slower (values < 1).

For example, the mathematical subtests f, N2 to N7, N13, andé¢bd to performe faster
for the configuration "not connected to a network".. Sineeresults passed the bordiggy,
they are assumed as significant.

Note, the subtests a to 0 and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).

17

Benchmark experiments on workstations 18

Figure 3.3: Thevaluesr eftect (cf. €q. 2.3b) represented as bars bggh (cf. eq. 2.4) repre
sented as line with squares show for each subtest (cf. chap. 2.2, talan@.%.6) the
influence of not using extsions (cf. chap. 2.3) combined combinedth not being
connected to a networRhe squares lying at 1 or -1 give also the border for which the
subtests can be samed as significantly faster (values > 1) or slower (values < 1).

For example, the mathematical subtests f, N2 to N7, N13, andé¢id to performe faster
for the configuration "not using extensions and not connectedébark”, but since no re
sult passed the bordegjg, the results can not be assumed as significant.

Note, the subtests a to 0 and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).

Fourth, the resultsf the benchmark runs on the PowerPC 8100/80 using several software
emulation programs (cf. chap. 2.3) for the FPUhar is given in table 3.7, in which the
mean, standard deviation, minimum, and maximum value over all subtestsgentrated
results are included. The rung&re designed with the benchmark program written in the
programming languagklodula-2 (MacMETH) on a PowerPC 8100/80. Additionally, fi
gure 3.4 shows the influence of the PowerFPU V1.01 vs. usirsgich emulation for each
subtest.

This results show clearly that the sharewdodwareFPU V3.02 and V3.03 allows to run
programs which neeal FPU on a PowerPC 8100/80 but without the performance which a
co-processor adds to a computer. In contrémg, shareware PowerFPU V1.01 yields
additionally a signiftant increase in the run-time behaviour of applicatiwhikh needs a
FPU.

For details, eachubtest for the case using PowerFPU is shown in figure 3.4 in which the
valuesrend andrsign are given related to the case of usingseftware emulation. As
suspected, figure 3.4 shows that the gain in run-time is reaftizéé mathematical stdsts

(cf. chap. 2.2).

Benchmark experiments on workstations 19

SofwareFPU V3.02 SofwareFPU V3.03 PowerFPU V1.01
Mean 0.5 -0.7 96
Std Deviation 7.7 0.9 212
Min -3 -3 -100
Max 43 1 933

Table 3.7:The influence of using software emulation or not with the shareware SoftwareFPU V3.02,
SoftwareFPU V3.03, and PowerFPU V1.01 to mine-time behaviour of the benchmark program on a
PowerPC 8100/80. These values over all subtests are given in percegt &2) related to the run with

out using such a software emulation.

For example, the measurements yield that using PoweYARQ1 increase the speed in mean of about 96
percent.

Figure 3.4: Thevaluesl eftect (cf. €. 2.3b) represented as bars bygh (cf. eq. 2.4) repre
sented as line with squares show for each subtest (cf. chap. 2.2, talané.2.6) the
influence of using the FPU eration PowerFPU V1.01 on a PowerPC 8100/80. The
squares lying at 1 or -1 give also the border for whichstii#ests are significantly faster
(values > 1) or slwer (values < 1).

For example, the mathematical subtests f, N2 to N7, N13, anddé¢bd to performe faster
if the software emulation PowerFPU V1.01 is used. Since the rpasited the bordéign,
they are assumed as significant.

Note, the subtests a to 0 and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).

Fifth, the results fothe SANE library for the PowerPC 8100/80 (cf. chap. 2.3) is given in
table 3.8. The runs were designed withltkachmark program written in the gramming
language Modula-2 (MacMETH) on a PowerPC 8100/80. fEsisrun were performed by
the combinations SANE on/Compile/DMMathLib vs. SANE off/Compile/ DMMathLib.

Benchmark experiments on workstations 20

all subtesty mathematical subtests
e, f, N2 to N7, N13 to N15

Mean 8 24
Std Deviation 17 21
Min 81 81
Max -7 10

Table 3.8 The run-time behaviour of the SANE library on a PowerPC 8100/80. Theofallnesubtests
are given in percent (cf. eq. 3.2) related to the run using SANE. For exawiplesing SANE is in mean
24% faster for the mathematical subtests.

In this test the mathertigal combinations SANE on/Compile/DMMathLib vs. SANE
offlCompile/DMMathLib were used.

Sixth, we come to the performance of the different machines (and therettve cdmbi
nation computers, operating systems, and emulations as it is magvgrinday use) which
are used for the benchmark test. Here we use three sights of view.

First, we took the meartd all subtests of each tested machine and compute by eq. 3.1 the
gain and loss athe performance. The two tables 3.9 and 3.10 and figure 3.5 show how
many timedaster or slower the tested machines are related to the Macintosh IIfx which is
refaenced as 100%. Note, the Modula-2 benchrpaogram for the Macintosh computers
was configured by the options SANEB/Compile/MathLib (cf. chap. 2.1, tab. 3.4 and 3.5).
For the configuration of the usedmpilers on the SUN and IBM workstations refer to
chap. 2.1.

Note, for these tests the software emulation SoftwareFPU V3.02 was used, siscf the
ware emulation PowerFPU V1.01 was aedilable at this time. With the results which are
summarized in table 3.7 and figure 3.4, the performance of the Pov@di®dZ80 with
PowerFPU V1.01 can be assumed as similar as the Quadra 700.

Quadra 700 Quadra 950(PowerPC [PowerBook | PowerBook
8100/80 170 520 and 540d

158 217 103 60 215

Table 3.9 The mean gain of performance of the Macintosh computers related to the Macintosh lIfx, i.e.
100%. These Vaes are the average of all subtests related to 100% for the Macintosh lIfx. For extagnple,
Quadra 950 is 217% d$ter than the Macintosh lIfx.

Note, we used the options SANE on/Compile/MathLib (cf. chap. 2.1, tab. 3.4 and 3.5).

The PowerPC 8100/80 had included the softvearmilation SoftwareFPU V3.02 (cf. tab. 3.7, 3.8, and
fig. 3.4). With the results which are summarized in table 3.7 and figure 3.4, the gwenfagmance of the
PowerPC 8100/80 with PowerFPU V1.01 can be assumed as similar as the Quadra 700.

SPARCSstatiorf SPARCserver SPARCstation" IBM (486) | IBM (Pentium)
10 MP 630 ipx

566 237 212 | 279 663

Table 3.10: The mean gaiof performance of the SUN and IBM workstations related to the
Macintosh lIfx, i.e. 100%. These valuese the average of all subtests related to 100% for the
Macintosh lIfx. For example, the IBM (Pentium) is 663% faster than the Macintosh IIfx.

For the configuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1.

Benchmark experiments on workstations 21

IBM (Pentium)
IBM (DX486)

SPARCstation ipx
SPARCserver

MPG30
SPARCstation 10

PowerBook540
PowerBook170
PowerPC 8100/80
Quadra950
Quadra700

[19%

0% 100% 200% 300% 400% 500% 600% 700%

Figure 3.5: The mean gain of performance of all computers refatéde Macintosh IIfx,
i.e. 100%. These values are tlawerage of all subtests related to 100% for the
Macintosh IlIfx. For example, the SPARCstation 10 is 566% fasterttiegaMacintosh IIfx.

Note, the benchmark on the Macintosh computers werparfidrmed in the fastest way; we
used the options SANE on/Compile/MathLib (cf. chap. 2.1, tab. 3.4 and-8r%he con
figuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1.

The PowerPC 8100/80 had included the software emulation SoftwareFPU W«3.02
tab. 3.73.8, and fig. 3.4). With the results which are summarized in table 3.7 and figure
3.4, the averagperformance of the PowerPC 8100/80 with PowerFPU V1.01 can be assu
med as similar as the Quadra 700.

Second, with eq. 3.2 we looked more detailed at the run-time behaviour of each subtest.

The differences between the several machines in relation tesubhtests atoo and
N1 to N18 are in parts quite big. The following tvadles 3.11 and 3.12 give moretaled
information.These data series are computed by eq. 3.2 @ithrence= Sifx) with which
the resulting dat®gyptesfor each subtest is computed WilachineandSix the values of
a subtest of the special machine and the Macintosh IIfx, respectively.

Benchmark experiments on workstations 22

Test no. |Quadra 700 [Quadra 950 PowerPC PowerBook
8100/80 520 and 540c
a 58 135 -12 111
b 98 139 -13 118
c 52 146 -15 150
d 71 130 72 130
e 141 219 380 28
f 106 163 1451 12
g 45 95 0 96
h 16 58 11 60
i 43 98 29 100
j 24 62 33 65
k 52 108 25 113
| 87 149 39 160
m 100 165 37 194
n 65 120 35 173
N1 49 98 -4 100
N2 100 155 1175 14
N3 138 219 694 18
N4 104 160 1654 13
N5 137 209 1000 16
N6 135 209 2799 22
N7 55 104 488 6
N10 52 102 2 104
N1 61 115 1 117
N12 39 85 1 104
N13 108 159 155 13
N14 133 213 170 36
N15 122 194 106 9
N16 91 151 18 146
N17 61 127 24 65
N18 55 89 -46 289

Table 3.11: This table shows (dercent) for every subtest which Macintosh computer is faster or slower
as the reference machine Macintosh IIfx, i.e. 100%. High values are set in italic.

The used configuration is (cf. chap. 2.1, tab.ehd 3.5) Sane on/Compile/DMMathLib. Note, for these
tests, the PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf. fig. 3.4).

Benchmark experiments on workstations 23

Test no. | SPARCsta— | SPARCser— | SPARCsta— | IBM(Pen- | IBM (486)
tion 10 ver MP 630 | tion ipx tium)
a 474 130 130 777 223
b 477 142 141 500 133
c 349 94 93 456 138
d 428 182 181 111 6
e 33299 13298 10614 12274 5599
f 25867 10133 7612 10514 6586
g 109 15 15 1270 358
h 187 58 58 163 -7
i 153 45 44 688 239
g 3139 86 3580 183 4
k 466 207 194 1011 326
| 461 155 65 703 216
m 199 -20 2 456 83
n 322 46 127 508 174
N1 320 68 69 325 102
N2 28447 14659 12901 7437 4490
N3 28271 13271 11597 8317 5002
N4 31227 15271 13318 10001 6035
N5 26312 12809 10930 8683 5389
NG 17943 6893 6194 58723 29903
N7 4398 1610 1390 87812 37258
N10 350 81 36 144 22
N11 372 70 41 390 120
N12 352 82 36 209 35
N13 19474 8098 7726 9346 5772
N14 7833 3795 3442 958 567
N15 3685 1802 1506 2103 965
N16 553 209 146 614 267
N17 510 141 65 133 16
N18 982 351 289 ho data no data

Table 3.12: Thisable shows (in percent) for every subtest which SUN and IBM workstation is faster or
slower as the reference machine Macintosh IIfx, i.e. 100%. Extremely high values are set in italic.
For the configuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1.

The data seriesf tables 3.11 and 3.12 are now condensed to mean values, standard de
viations, minima, and maxima. Tables 3.13 and 3Hdw these values for each chme.

The information of tables 3.11 and 3.12 are represented as boxirplétgures 3.10a

and 3.10b, too.

Benchmark experiments on workstations

Quadra 700 | Quadra 950 | PowerPC PowerBook
8100/80 520 and 540c
Mean 81 140 332 77
Std Deviation 36 46 627 58
Min 16 58 -46 6
Max 141 219 2799 194

24

Table 3.13: The mean valustandard deviation, minimum and maximum value extracted from table 3.11
of all subtests for the Macintosh computers related to 100% for the Macintosh IIfx.
The used configuration is (cf. chap. 2.1, tab.ehd 3.5) Sane on/Compile/DMMathLib. Also, for these
tests, the PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf. 88, 3.7,

and fig. 3.4).
SPARCsta— | SPARCser— | SPARCsta- | IBM(Pen- |IBM (486)
tion 10 ver MP 630 | tion ipx tium)
Mean 7667 3355 2991 8065 3866
Std Deviation 11606 5331 4540 18419 8350
Min 109 -20 2 111 -7
Max 33299 15271 13318 87812 37258

Table 3.14: The mean value, standard deviatiinjmum and maximum value (extracted from tab. 3.12)
of SUN and IBM workstations related to 100% for the Macintosh IIfx.

For the configuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1.

Benchmark experiments on workstations

300] : : S _ 3000 _ (') : : : _

250 - - 2500 . [~

200 [2000 - =

l | 1 © [

1500 1§ L

150 - L] I

] T‘ | 1000 - .

100 1 500 4 i
50

0 -500

Quadra700 { @O
Quadra950 1
Quadra700
Quadra950

o
PowerBook 520 and 540c @‘ —0 0
1 ' 1
o
1 1 1
T

PowerPC 8100/80
PowerBook 520 and 540c¢

Figure 3.10a: The data series of the tables 81t33.14, and therefore the extracted data of
the tables 3.10 and 3.11, are represented as box plots.

The used configuration is (cf. chap. 2.1, tab. 3.4 and 3.5) @d@@mpile/DMMathLib.
Also, for these tests, the PowerPC 8100/80 had incluthed software emulation
SoftwareFPU V3.02 (cf. tab. 3.7, 3.8, and fig. 3.4).

25

Benchmark experiments on workstations 26

90000 T : : 5 +— 35000 : : :
80000 A B 30000- 8 N
70000 1 - 55000 4 [
60000 7 o " 200001 :
50000 - - 1 i
40000 A o I 150007 ‘?’ [
30000 1 o | 100007 % [
20000 1 - 50007 ¥
10000 o ? e o I 07 X

0 - - -5000 7 "

-10000

SPARCsta-tion 10 1
SPARCser-ver MP 630

SPARCsta-tion ipx 1

IBM(Pen-tium) 1

IBM (486) 1

SPARCsta-tion 10 1
SPARCser-ver MP 630

SPARCsta-tion ipx 1

Figure 3.10b: The data series of tables 3.13 and 3.14, and therefore the edtiactédab
les 3.10 and 3.11, are represented as box plots.

For the configuration of the used compilers on the SUN and IBM workstationstaefer
chap. 2.1.

Third, on the base of the values given in tables 3.11 and 3.12 we computedhe
standardieviation, maximum, and minimum alordl tested machines. These values are
shown in table 3.15. Figures 3.11 to 3.14 showirtf@mation contained in this table as
box plots for the several machines.

Benchmark experiments on workstations

Test no. | Mean Std. Deviation | Min Max

a 225 247 -12 777
b 193 175 -13 500
c 163 148 -14 456
d 146 120 &) 428
e 8406 10865 28 33299
f 6795 8427 12 25867
g 221 408 -13 1270
h 66 68 -7 187
i 159 210 21 688
j 797 1458 4 3580
k 278 308 22 1011
| 224 219 24 703
m 135 144 -20 456
n 174 153 35 508
0 207 233 9 712
N1 125 117 -3 325
N2 7597 9661 14 28447
N3 7445 9389 18 28271
N4 8477 10461 13 31227
N5 7184 8774 16 26312
N6 13356 19828 22 58723
N7 14748 29928 6 87812
N8 4101 7225 10 17938
N9 1872 2960 20 7253
N10 99 104 1 350
N11 143 141 1 390
N12 105 111 1 352
N13 5651 6498 13 19474
N14 1905 2652 36 7833
N15 1165 1239 9 3684
N16 244 205 19 614
N17 134 149 16 510
N18 254 349 -18 982

27

Table 3.15: On thbase of the values given in tables 3.11 and 3.12 the mean, standard deviation, maxi
mum and minimum of alonagll tested machines are represented in this table.

Benchmark experiments on workstations

250 7 N
200 N
150 7 u B

100 7 1

HHH - H

_50 —TTTTT
Mmoo oAt mes T
Pl e o i o

Figure 3.11: This figure shows the mean, standard deviation, maximumrmiamdum of

the values in table 3.11. The box plots represent only the mean, standard dewiation,
mum, and minimum from the tested Macintosh computers. Note, for these thests,
PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf. fig. 3.4).

28

Benchmark experiments on workstations

1400 7] i
1200 7 B
1000] i
800 i
600 T

2yl$%éaé éééééé |

O -

{TF—

-200

M1
[W10
M1z
M1E
[H17 1
N

- H11

90000 T _
80000 T -
70000 T _ .
60000 -
50000 7] -
40000 7 -
30000 7 -

?ggggr : LoE =t |T|.T.I__LI-*-$::

O -
-10000

Wz
h3

= L o | jux} o
= = = = = =

M1z
Mi4]
Mi15

Figure 3.12: On the base of the values given in tablesaBd 8.12 the mean, standard de
viation, maximum, and minimum of aloadj tested machindsf. tab. 3.14) are repsened

as box plotsNote, for these tests, the PowerPC 8100/80 had included the software emula
tion SoftwareFPU V3.02 (cf. fig. 3.4).

29

Benchmark experiments on workstations 30

4000 T
: T -
3000 T N
2000
1000 3
: :émgé&l:é;égééumégr_ﬁ Qégi

maowmomeTTx- fcozZO-NBOka

100000 - : I
80000 1 i
60000 i
40000 []- i
_' [T L1 -

20000
O--i-,_&JTHT”?“T' |_|=.'?'é"_

MG
M3 1
]

T

o [
= =

Mz
N
N4
NS

Figure 3.13: This figure shows the mean, standard deviation, maximunmiamdum of
the values in table 3.12 as box plots of the tested SUN and IBM workstations.

In order to complete the tests, wramined also the influence of seceral options (SANE
on/off, using Compile/Compile20 of MacMETH and the library
DMMathLib/DMMathLibF from theDialog Machine V2.2) on the performance of the
PowerPC 8100/80 which used the software emulation PowerFPU V1.01 (c8.1&b.
Table 3.15 shows that for thediéferent combinations the run-time behaviour is nearly the
same.

Refer to tables 3.3 to 3.5 for the equivalent examinations on a Quadra 950.

Benchmark experiments on workstations 31

DMMathLi DMMathlibF
b
Compile20 [Compile20 | Compile20
on off on
SANE |on 0.6 0 1.7
SANE | off 0.9 0.1 2.3

Table 3.16: Results of different options SANE on/off, Compile20 on/off CavitllathLib or the fast ver
sion DMMathLibF for the benchmark tests on the PowerPC 8100/80 with the softwaration
PowerFPU V1.01. These results are the mean valthee afubtests in percentage difference (cf. eq. 3.2) of
the measurements. The differences are small for the different options.

Refer to tables 3.3 to 3.5 for the data of the equivalent examination on a Quadra 950.

Seventh, we compare runs of the Modula-2 version vs. trex<ion of the benchmark pro
gramby using eq. 3.1. Table 3.17 and figure 3.14 show how much faster or slower the
tested compilers on the 4 machiras related to the slowest run which is referenced as
100%. Note, first, on the different platforms there were used different Modula-Z and
compilers. Second, for the Modula-2 benchmark program the optBABE
off/Compile20/DMMathLibFare used (cf. tab. 3.4 and 3.5). Third, the C and Modula-2
benchmark programare implemented in different ways (cf. chap. 2.2). For information
about the used compiler options refer to chapter 2.1.

Table 3.18 gives a more detailed view to thest subtests of the C bemcark run. The
result of the Modula-2 benchmark is included to get an impression of possible diéfgren

PowerPC 8100/8pQuadra 700 SPARCstation ipx| SPARCstation 1(
142 154 227 414

Table 3.17: Results of thdodula-2 version of the benchmark program vs. the C version. This table
shows four (independent) pairs of mean values afuddtests given in percent (cf. eq. 3.1) to the result of
the Modula-2 benchmark run which is chosen as the reference value of 100%. For informatiadheabout
used compiler options refer to chapter 2.1.

For the Macintosh computers the Modula-2 compilation was performed bgothbination SANE
off/Compile20/MathLibF (cf. tab. 3.4 and 3.5).

PowerPC
8100/80

Quadra700
SPARCstation ipx

SPARCstation 10

Benchmark experiments on workstations

32

W vodua Oc

—

| ———
_—
_—

0%

100%

200%

300%

400%

500%

Figure 3.14: Results of the Modula-2 versafrthe benchmark program vs. the C version.
This figure shows four pairs of (independent) mean values of all subtests gpe¥nant (cf.

eg. 3.1) to the result of the Moduld&s&nchmark run which is chosen as the reference value
of 100%. Note, on the different platforms different Modula-2 ammb@pilers were used. For
information about the used compiler options refer to chapter 2.1.
For the Macintoslcomputers the Modula-2 compilation was performed by the combination

SANE off/Compile20/MathLibF (cf. tab. 3.4 and 3.5).

Test no.| Modula-2 C C vs. Modula-2
No. of iterations [[No. of iterations | Difference in per cent
a 396288000 1322166148 234
b 330191264 1322084667 300
c 282868512 1307158613 362
d 66664000 11608000 -83
e 79921688 1319999987 1552
f 3214200 6802400 112
g 41767068 237168000 468
i 3873 32259 733
k 158080016 495807228 214
I 58701196 360736000 515
m 584000 712350 22
n 3007000 7552000 151
N1 397196800 1320070646 232
N2 19879518 26474600 33
N3 20577290 28328400 38
N4 14991968 18693625 25
N5 18183666 23906800 32
NG 9009601 43316800 381
N7 13825099 49800796 260
N8 200159360 41666400 -79
N9 236671984 35369721 -85
N10 201360000 1322708265 557
N11 4546613 49664000 992
N12 18512880 1322611726 7044
N13 61999380 1711520 -97
N14 67732664 1714080 -98
N15 118640000 68408000 -42
N16 631872 306465863 48401

Benchmark experiments on workstations 33

Table 3.18: This table shows the results of the benchmark runs C vs. Modula-2 @Utthe
SPARCSstation ipx for the most subtests. The first two columns contains the abssdsteed no. of ie
ration within 100 seconds. The third column shows whether C is faster (positive values) ofrsigaiire
values) as percentage difference to the C run. Theesafthe third column are computed by eq. 3.2 with
the Modula-2 benchmark run as the refere.

Note, the C and Modula-2 benchmark programs are partly implemented in different kindsafcf.2.2).
For information about the used compiler options refer to chapter 2.1.

Table 3.19 containghformation about several differences of the run-timéabveour of
program constructions in thgogramming language C as e.g. of different loop constructi
ons etc. In each group we used eq. 3.1 and refer to the sloweas$ ri@0%. For the
comparison of one dimensional array versus multi-dimensional array acwbsay vs.
list access the different implementations related to the assignments of variabheseof
subtests has to be taken into account. Refer to taludch contains the same infortran

for the Modula-2 benchmark test.

type conversion 1 loops 11
N12 407 |a 101
N11 100 ||b 101
N7 304 |[c 100
built-in function V integer vs. real VI
++i arithmetic
a 100 ||d 100
N1 100 [le 120
procedure VIl || 1-D array vs. VIII || array vs. pointer IX
calls 2-D array
K 269 ||g 108 ||g 1389
I 100 i 100 [In 100

Table 3.19: This table contains in six boxkedll, andV toIX information about several differences of
the run-time behaviour of program constructifinsthe programming language C) in percent (cf. eq. 3.1)
to the slowest run in each group which is the reference of, i.e. 100%. Thesaredatetracted from
tab. 3.18.

We refer to tab. 3.2 which contains the same type of data for the Modula-2 benchmark test.

3.2 The Benchmark Tests by the Application Speedometer

Since we do not know how the benchmark tests in Speedometerard.dfiplemented, the
results obtained by these tests can not be taken too seriousixdrople, we do not know
in which programming language Speedometer V4.02 is written, neitheredknow by
which compiler and therefore by which compiler optionssthherce code was compiled and
linked. Additionally, it is alsounknown how the algorithms in Speedometer are im
plemented. All these points can have a crucial influence of the performasmcepplicion
(Loffler, 1995)

The resultproduced by Speedometer V4.02 can be helpful in order to complete the over
view of the performance dhe tested Macintosh computers. Although this additional in
formation generated by Speedometer has to be used cautioaaty give hints and relative
informaion, e.g. which machines show a betparformance than in the test by our
benchmark program.

Benchmark experiments on workstations 34

The benchmarkest by Speedometer V4.02 from Scott Berlfield are summarized in tab
les 3.20 and 3.21. Note, the reference machine for Speedaméter Quadra 650 which
performance is assumed to be 1.0.

Benchmark Mixq ll1fx Quadra Quadra PowerPC | PowerPC
700 950 8100/80 |8100/80
68K code | PowerPC codpe
KWhetstones 0.501 3.965 5.220 5.797 |135.042
Dhrystones 0.374 1.056 1.429 0.542 4.330
Towers 0.439 0.996 1.345 0.639 5.383
Quick Sort 0.542 0.972 1.318 0.562 6.584
Bubble Sort 0.491 0.982 1.327 0.384 4.115
Queens 0.471 0.961 1.299 0.566 4.329
Puzzle 0.390 0.990 1.347 0.613 5.734
Permutations 0.380 0.961 1.298 0.662 5.901
Int. Matrix 0.408 0.966 1.319 0.757 6.534
Sieve 0.614 0.936 1.238 0.469 4.456
Average 0.461 1.278 1.714 1.099 18.241

Table 3.20: The benchmark tests "Benchmidik' examined with the application Speedometer V4.02.
The raults are given in relation to the Quadra 650 which performance is assumed asth®.HeaerPC,
the application Speedometer V4.02 can test both, the behaviour of the PowerPC for 68K codeadive for
code.

FPU Benchmarkllfx Quadra 700 Quadra 950PowerPC
8100/80
PowerPC code

KWhetstones 0.371 0.760 1.027 7.695

Matrix Mult. 0.218 0.722 0.971 8.347

Fast Fourier 0.187 0.714 0.973 7.205

Average 0.259 0.732 0.990 7.749

Table 3.21: The benchmark tests "FPU Benchmarks" examined with the application Speeddrigter
The raults are given in relation to the Quadra 650 which performance is assumed asth®.HeaverPC,
the application Speedometer V4.02 can only test the behaviour of the PowerPC for native code.

4. Summarize

We remind that the used Modula-2 compNaicMETH V3.2.2(Wirth et al, 1992)is not

able to generate natieede for the RISC processors used by the PowerPC family. Hence,
all results produced on the tested PowerPC 8100/80 do neither refléatetrabilities of

this machine nor of the PowerPC computer family in general.

In the following we briefly summarize the ndsenchmark results without any interpreta
tion. First we extract awers for the different test conditions of chap. Z8r the de
scription of the used machines, compilers, and compiler options refer to chap. 2.1.

Benchmark experiments on workstations 35

For mathematical operations the results are:

Not using SANE for Macintostomputers increases the mean speed by approxi
mately 40% (cf. tab. 3.4nd 3.3). More precisely, the range of the increase for
mathematicabperationslies betweerl% to 180%, dependent on the particular

mathematical operation (cf. tab. 3.4, and 3.5).

Using Compile20 increases for Macintosh computersrtban speed by apprexi
mately 60% (cf. tab. 3.4nd 3.3). More precisely, the range of the increase for
mathematicabperationdies between 12% tb700%, dependent on the particular
mathematical operation (cf. tab. 3.4, and 3.5).

Using the optimised library DMMathLibF combined with Compile20 increases
the mean speed by abdifi0% (cf. tab. 3.4). More precisely, the range of the in
crease fomathematicabperationslies between 0% to 4000%, dependent on the
particular mathematical operation (cf. tab. 3.4, and 3.5).

For details refer to tables 3.3, 3.4, and 3.5.

For the influence of aetwork and of extensions (cf. chap. 2.3) to a Macintosh the results
are:

Using no extensions for Macintosh computgedds a mean increase in speed of
approxmately 400%. Thereby, the gain in the run-tipggformance is contritied
mainly from the mathematical subtests (cf. tab. 3.6 and fig. 3.1).

Not to be connected to a network yields for Macintosimputers a mean increase
in speed o&pproximately 30%. Thereby, the gain in the run-time performance is
contributed mainly from the mathematical subtests (cf. tab. 3.6 and fig. 3.2).

Contrary, the benchmark for using eatensions and being uncuted to a
networkdidn't bringany measurable effect for Macintosh computers (cf. tab. 3.6
and fig. 3.3).

For details refer to table 3.6 and fig 3.1, 3.2, and 3.3. Notethkat results are inter
pretations of the measurements based on the equations given in chap. 2.5.

For runningnon-nativeapplications on a PowerPC 810048@h the software emulations
SoftwareFPU V3.02 and V3.03 and PowerPFU V1.01, the results are:

For the PowerPC 8100/8the FPU emulation SoftwareFPU V3.02 and V3.03
(share-ware) allows to run applications which need a BR\ields no advaage
in speed (cf. tab. 3.7 and fig. 3.4).

The FPU emulation PowerFPU V1.01 yields additionallyn@an increase in
speed of about 96%. That meaRswerFPU V1.01 doubles the speed of a
PowerPC 8100/80 faron-nativeapplications which needs a FPU (cf. tab.&hd

fig. 3.4).

Thereby, the gain in the run-time performarceaused mainly by the itemati

cal subtests (cf. fig. 3.4).

On the PowerP®@100/80 with the software emulation PowerFPU V1.01, the
mathematical options SAN&n/off, Compile20 on/off, and using DMMathLib or
the fast version DMMathLibF yield mainly the same run-time behaviour.

Benchmark experiments on workstations 36

* In this specialconfiguration, i.e. runningon-nativecode and using the software
emulation PowerFPU V1.01, the PowerPC 8100/80 hasvarageperformance
such as the tested Quadra 700.

* On a PowerPC 8100/80 with the software emulation PowerFPU V1.0&pthe
ons SANE on/off, using Compile/Compile20 of MacMETH and the library
DMMathLib/DMMathLibF from the Dialog Machine V2.2 do ndiffer much
(cf. tab. 3.15).

For details refer to tables 3.7, 3.8, 3.16, and figure 3.4.

Again we remember, these results are interpretations of the measuréaesds on the
equations given in chap. 2.5.

Thebenchmark test by the application Speedometer V4.02 (cf. chap. 3.2, tab. 3.20, and
3.21) show the big difference of running applicatiaigch are generated for the Motorola

68K CISC processors vs. running applications in native code on the PowerPC 8100/80.
Also new benchmark examinations (@¥leyeret al, 1996) show that the performance of

the PowerPC machines for integer and floating point operationa @ne same range as
Pentium workstations.

The comparison of the tested different machines yields:

* The speed of Macintosh computers (from lIfx over Qua@@ to Quadra 950) in
creases more or less lineanyith all tested machines (cf. tab.9, 3.10, and
fig. 3.5).

» The SPARCstation 10 is double as fast as the SPARCstation ipai(c8.10 and
fig. 3.5) which speed lies in the range of the SPARCserver MP630.

* Thetested IBM workstations can compete with the tested SUN workstations (cf.
tab. 3.9, 3.10, and fig. 3.5). Note, théssted workstations are not the latest ones.
Therefore, wecan not make statements about e.g. Intel Pentium computers and
SUN UltraSparc machines.

» The SPARCserver MP630 with two processors is about a factor 1.2 fastéreghan
SPARCSstation ipx (cf. tab. 3.10 and fig. 3.5).

* The IBM workstations with Pentiuprocessor is about a factor 2 faster than that
one with the 80486/80487 chip (cf. tab. 3.10 and fig. 3.5).

For details refer to tables 3.9, 3.10, and figure 3.5.

On the Macintosh computers, the comparison of language elements, compiler optiohs etc.
the Modula-2 compiler MacMETH V 3.2.2 and the C compiler MPW C V3.3 yields:

* Equivalent language elements, such as several loop constructiorgveadiffe
rent run-time behaviour.
The various loop constructions in Modula-2 (MacME™ifjer in speed within a
range of 22%0 58%. The C benchmark tests (MWP C) yield for different loop
corstruction nearly the same run time behaviour (cf. tab. 3.2 and 3.19).

» Built-in functions, suchas Inc() and Dec() in Modula-2, can be faster than the
normal constructions.
The built-in functiondnc() andDec() in Modula-2 (MacMETH) are abo®0%

Benchmark experiments on workstations 37

faster than the normal constructiarssi+1 andi:=i-1. In theprogramming lan
guage C (MPW C) no difference between the constructionsandi-- vs.i=i+1
andi=i-1, respectively, can be recognized (cf. tab. 3.2 and 3.19).

* By increasing the parametist, calls of subprocedures need significantly more
run-time.
In Modula-2 (MacMETH) the difference between callingudoprocedure with and
without aparameter list of four integers (call by value) is about 24%. In the pro
gramming language C (MPW C) the difference was measured as 169%.

* An algorithm can be significantly slowed dovay checking ranges of arrays,
pointers etc.
For thecompiler MacMETH checking ranges etc. decrease the speed by about
48% to 72% depending on the operation.

* The access to one-dimensional vs. two-dimensional arrays of samsizetakn
be different.
In Modula-2 (MacMETH) the acce$s one-dimensional arrays was measured as
about 37% fastein the programming language C (MPW C) this difference was
8%.

* The access to one-dimensionalays vs. lists via poiar can be significantly df
ferent. For Modula-2 (MacMETH) thaccess to arrays was measured as about
1108% faster. For C (MPW C) this difference was about 1289%.

* Reading integer disk streams was in Modula-2 (MacMETH) about fa2%r
than reading real disk streams.

For details refer to tables 3.2, 3.18, and 3.19 and figure 3.14, but also table 3.1.

These comparisorisetween the used compilers of Modula-2 and C and of equivalent lan
guage constructions of Modula-2 and C, such as e.g. different loopsotche taken as

very strong results. Also comparisions between the run-time behaioeug. the loop
constructions of Modula-2 and C have to be made carefully.

For instance, we doot know the implementation of the compilers and hence the influence
of the compiler optins to applications can not exactely be taken intsidenation(cf.
chap.2.1). Therefore, we did not test standardized compilers but ones in their typical user
mode.

This comparison of the different compilers or programming languages yields:

* In average oveall subtests (cf. tab. 2.5 and 2.6), the tested C compilers seems to
generate codehich runs by a factor 1.5 to 4 faster than the compaide of
the tested Modula-2 compilers (cf. tab. 3.18 and fig. 3.14).

5. Discussion

We remind that the used Modula-2 compNescMETH V3.2.2(Wirth et al, 1992)is not

able to generate natie®de for the RISC processors used by the PowerPC family. Hence,
all results producedn the tested PowerPC 8100/80 do not reflect neither the true abilities
of this machine nor of the PowerPC family in general.

This factis for example demonstrated by the benchmark test with Speedometer V4.02 (cf.

Benchmark experiments on workstations 38

chap. 3.2, tab. 3.20 and 3.21) aisb by comparisons between the PowerPC and Pentium
machinegMeyeret al, 1996)

Generally, it has to be in mind that the results of benchmark tests depend

» strongly on the used configurations, such asteegused compilers and compi
ler options, the produced binaries in native codeot, the definition and im
plementation of the benchmark tests etc.

» on the configuration of the machine, such as the connection to a network etc.

* and on the decads which the machines were tested, since, e.g. a formerly fast
machine can at a later time be one of the slowest tested computers.

Therefore, interpretations of benchmaesults has to be made safely and relatively with
respect to these facts.

The worth of benchmarks do not lie in strargl absolute results, but in tips and hints for
special purposes, ian overview which can be extracted from the produced data, in a
summary of data which are collecteder years, and in getting an idea of what an user can
expect from a machine in every day use.

The benchmark examinations presented inghger did not yield big surprises, except the
results for the PowerPC 8100/80 which therefore needs a speaigée and except the-re
sults influence of aonnection to a network or using extensions (cf. chap. 2.3) by a
Macintosh computer.

For the overview in tables 3.9 and 3.10 and figure 3.5 of the average over the measured
performance of the tested machines ittoake in mind that the benchmark programs were
compiled and linked with different compilers (cf. chap. 2.1).

Nevertheless, by this overview of the tested platforms we obtain an impressionpet-the
formances with whiclone probably has to deal. Relative to the group of machine they be
longs to, theSUN workstations, IBM, and Macintosh computers show an expected per
formance. So, for example, it was expected that a Pentium, SPARCstation 1Dy &t

950 are faster than the DX486, SPARCstation ipx, and Macintosh lIfx, respectively.

Also, a comparison of the groups SUN, IBM, and Macintosh computersndbgseld a
surprise. The Pentium machine can compete with the tested SUN workstations, batehese
notthe latest available SUN workstation such as e.g. the UltraSparc. The Quadra 950 can
compete with the DX48@nachine as well with the SUNstation ipx and SPARCserver
MP630.

For the PowerPC 8100/80 thesults show that this is clearly a fast machine (cf. tab. 3.20
and 3.21). But by executing 68K binari#gs good performance of the PowerPC 8100/80

is not of use, since these binaries are not native code for this RISC machine.

With the software emulation PowerFPU V1& speed of mathematical operations can
significantly be increased (cf. tab. 3.7 and fig. 3.4). Therefore, the meg=ufednance of

the PowerPC 8100/8 this specialconfiguration (executing 68K binaries and using
PowerFPU V1.01les in the range of the other tested Macintosh computers.

Hence, for the PowerPC has to be taken into consideration that

* the Modula-2 compileMacMETH V 3.2.2 can not generate binaries for RISC
architecture.

« therefore an software emulation has to be used in order to reduce this lack.

Benchmark experiments on workstations 39

Contrary to other Macintosh machines, ttleoice of various options (SANE on/off,
Compile/Compile20DMMathLib/DMMathLibF) did not have an influence on the perfor
mance of a PowerPC 8100/80 with the softwameulation PowerFPU V1.01. This is no
suprise, since asoftware emulation can not replace a mathematical co-processor.
Nevertheless, in average, small differences were recognizable.

As the test with Speedometer V4.02 showstédd. 3.20 and 3.21), for taking advantage of
the RISC processor architecture of the PowerPC 8100/80 watiecapplication are nes
sary. By tables 3.20 and 3.21 itagpectablehatfor native code applications the overall
performance ofhe PowerPC 8100/80 can at least compete with the SUN and IBM work
stations.

Table 3.6 and figure 3.1 show that extensions (cf. chap. 2.3) usedgirtosh comuter
influence the performance. Surprisingly, this influence seenietstrong only for the
mathematical subtests (cf. tab. 2.5 and 2.6), but not for e.g. matrix access (subtest i).

A similar behaviour, bubhot such clearly, can be recognized if the tested machine is not
connected to the network (tab. 3.6 and fig. 3.2).

Obviously, networlor extensions use large parts of the processors capacity, as expected.

Astonishing was the resudf testing the same Macintosh machine which was unconnected
to a networkand did not use extensions. No difference between usingnahdising this
configuration can be recognized (tab. 3.6 and fig. 3\@®).repeated this experiment sele
times with the same result.

We have no explanation for this measurement besidenthethat the assumptions of chap.
2.5 for sensitive tests are not sufficient for some tests.

The benchmark results for the Macintosh compuieisg MacMETH(Wirth et al, 1992)
with the three possibilitiesl]f SANE on/off,) using Compile or Compile20, an8) (using
DMMathLib or DMMathLibF (cf. chap. 2.1, 2.3, and 3.1) can easily be interpreted.

The SANEsoftware library performs a 64 bit arithmetic, whereas without this library only
the available 32 bit arithmetic can be usBohce the 64 bit arithmetic is available by the
SANE library, the 64 bit arithmetic is slower than the 3Zahthmetic but has the better-ac
curacy and vice versa. Fdetails of this subject refer {@pple Computer, 1986; Apple
Computer, 1993a; Loffler, 1995)

In average, not using the SANE library increase the run-tirbeafies by about 40%. If a
mathematical coprocessorasailable in the Macintosh computer, then using the optimized
MacMETH compiler Compile20 instead of Compédditionally increase the run-time of
applications by aadditional 60%. Therefore, not using SANE together with compiling by
Compile20, binaries run about 100% fasterMacintosh computers with a mathematical
coprocessor than not using these optimizationghBysimple optimization, binaries which
are prodaed by the compiler MacMETH can benefit by a factor of about two.
Additionally, using the optimized mathematicdbrary DMMathLibF instead of
DMMathLib (Fischlinet al, 1994)increase the run-time of applications by about 400%.
Therefore, using the three optimzations on a Macintosh machine on avimathematical
coprocessor is available, binaries whaak generated with the MacMETH can benefit by a
factor of about five.

These results show the importance of using optimized software libraries lamalrohg the
effects of the used compiler options in order to write gamkrate fast applicatiorisoffler,
1995)

Programmershould always have in mind that different elements of programming langua
ges which are used in order to solve a special problmstrongly influence the perfor

Benchmark experiments on workstations 40

mance of ampplication. This is demonstrated by the different performances of constructi
ons of programming languages, such as e.g. several loop constructions orirgegargor
real disk streams (tab. 3.2 and 3.Fr this subject refer to e.@.o6ffler, 1995)

The comparison between Modula-2 and C can not give stesndfs. The main perspective
was to geainswers about the overall performance of different programming languages and
impressions of the differences which can occur if people useotheiler in their typical

user mode (cf. tab. 3.18 and fig. 3.14). Foruked compiler options refer to chap. 2.1.
Nevertheless, first, these results give an impressiondiff@rent equivalent constructions

of a programming language such as loops can be and that such differences t@abe not

the same way different for several languages or compilers. Second tlenedfects of
compiler options are not always described in details, differences in the rubefmagiour

of e.g. loopconstructions in different programming languages can unexpectedly be the re
sult of such compiler options. Third, theesults show how essential it can be to carefully
choose the constructions of a programming language for the applications whichvsatple

to develop(Loffler, 1995)

References
Apple Computer, I., 198@APPLE Numerics ManuaAddison-Wesley, 336 pp.

Apple Computer, 1., 1993&uildingand Managing Programs in MPW, For MPW V 3.3
Developer Technical Publications.

Apple Computer, I., 1993MMacintosh Programmer's WorkshopReference Developer
Technical Publications.

Borland International, 1., 199Rorland Pascal With Objects

Bugmann, H., 19940n the ecologyf mountainous forests in a changing climate: a
simulation studyDiss. ETH No. 10638, Swiss Federal Institute of Technology: Zurich,
Switzerland, pp. 258.

Bugmann, H. & Fischlin, A., 1994Comparing the behaviour ahountainous forest
succession models in a changing climéte Beniston, M(ed.) Mountain environments in
changing climatesLondon: Routledge, pp. 237-255.

EPC, 1991EPC Modula-2Jser's Reference Manudtdinburgh Portable Compilers
Limited.

Fischlin, A., 1986. Simplifying the usage and the programmafngodern working stations
with Modula-2: The Dialog Machine. Dept. of Automatic Control and Industrial
Electronics, Swiss Federal Institute of Technology Zurich (ETHZ)

Fischlin, A., 1991.Interactive modeling angimulation of environmental systems on
workstations In: Moller, D.P.F. (ed.)Analysis of Dynamic Systems in Medizjne
Ebernburg, Bad Miunster am Stein-Ebernburg, BRD: Springer: Berlin a.o., pp. 131-145.

Fischlin, A. et al, 1994.ModelWorks 2.2: An interactive simulation environméot
personal computers andorkstations.Systems Ecology Report No. 14, Institute of
Terrestrial Ecology, Swiss Federal Institute of Technole@¥l, Zurich, Switzerland, 324

pp.

Benchmark experiments on workstations 41

Fischlin, A., Vancso-Polacsek, K. & Itten, A988.The "Dialog Maschine" V1.(Projekt
Zentrum IDA/CELTIA, Swisd-ederal Institute of Technology ETH, Zurich, Switzerland, 8

pp.

foundation, G., 1993GNU project C and C++ Compiler (v2.4), GCC manu@++
manual.

Gilbreath, J., 1981. A High-Level Language Benchm@§.TE

Gilbreath, J& Gilbreath, G., 1983. Eratosthenes Revisited, Once More through the Sieve.
BYTE

Hinnant, D.F., 1984. Benchmarking Unix SysterB¥X TE

Keller, D., 1989Introduction to the Dialog MachineéBericht Nr. 5, Proijektzentrum IDA,
ETH Zdurich, 37 pp.

Linton, M.A., 1986. Benchmarking Engineering WorkstatiohSEE DESIGN & TEST

Lischke, H., Loffler, T.J. & Fischlin, A., 1996Aggregationof Individual Trees and
Patches in Forest Succesidviodels: Capturing Variability with Height Structured
Random Dispersion®8, SwissFederal Institute of Technology, Zirich, Switzerland, 17

pp.

Loffler, T.J., 1995How to WriteFast Programs - A Practicle Guide for RAMSES Users.
Systems Ecology Report Institute of Terrestrial Ecolo§wiss Federal Institute of
Technology ETH, Zurich, Switzerland.

Loffler, T.J. & Fischlin, A.,1997. Performance of RAMSESystems Ecology Report
Institute of Terrestrial Ecology, Swiss Federal Institute of Technology EAutich,
Switzerland.

Meyer, C., Perssolg., Siering, P. & Stiller, A., 1996. Showdown bei Zwo-Null-Nud't,
11/96 270-283.

Thony, J., Fischlin, A. & Gyalistras, D., 1998troducing RASS - The RAMSEf#ulation
Server.Systems Ecology Report No. 21,.

Vancso-Polacsek, K., Fischlin, A. &chaufelberger, W. (eds.), 198DBie Entwicklung
interaktiver Modellierungs- und Simulationssoftware mit ModujaS2mulationstechnik
Berlin, Springer Verlag, Voll50, 239-249 pp.

Wirth, N., 1981.The Personal Computer Lilitibepartement fir Informatik ETHUrich,
Switzerland, 70 pp.

Wirth, N. et al, 1992.MacMETH. A fast Modula-2anguage system for the Apple
Macintosh. User Manual. 4th, completely revised [@dpartementir Informatik ETH
Zrich, Switzerland, 116 pp.

Benchmark experiments on workstations 42

Appendix

A. The early benchmark tests

In the last decade, traditional benchmark téGitbreath, 1981; Wirth1981; Gilbreath &
Gilbreath, 1983Hinnant, 1984; Linton, 1986Jlescribed in chap. 2 as well as baneinks
such asSieve Ereal Freal, QueensandMacQueensvere executed. We give a short- de
scription of these five test programs in the following.

(Sieve) The programSieveis a procedurdor finding prime numbers based on the
Eratosthenes sievén the classic sieve procedure, the natural numbe@ariaeged in ater

and thertrossed out evergth number after reaching the numiverThe numbers that are
not crossed out, which pass through the sieve, are prime numbers.

One remarkable feature of the program is thav@ids multiplication and divisions because
these operations are usually sl@ilbreath, 1981; Gilbreath & Gilbreath, 1983)

Sievedoes many loopingnd array subscription and is thus biased strongly toward ma
chine-code compiler&ievetests compiler efficiency and processor throughput. It's an ex
cellent test for looping, testing and incrementing.

(Ereal) The progrankreal loops five thousand times through a simple multiplication and
division calculation of real numbers. This benchmark teshes same as subtest e (cf.
tab. 2.5) of the traditional benchmark test set.

(Freal) The prograntreal calculates the standard functions sin, éxmnd sqrt using real
numbers, fivehundred times. This benchmark test is the same as subtest f (cf. tab. 2.5) of
the traditional benchmark test set.

(Queens)The programQueensshall find all possible placement of eight queens ahess
board in such a fashion that none is checking any other pieceach row, column, and
diagonal must contain at most one piece. The program outputs a graphical presehtation
the queens position on the chdsmrd as the different solutions are being calculated.
Queengests the capability for line drawing of a computer.

(MacQueens)The progranMacQueenss similar to the progra@ueensut display$oth
the individual solutions, whichre already found, and the solution which is currently being
calculated. That is, this program requires somewhat more drawing capacity taretires

We restrict the view for these early benchmark to a summarization of the measured data.
First we give by the tables A.A,2, A3, A4, A5, and A6 an overview of the benchmark test
described in chap. 2 with a Modula-2 program. The data are gelated to the result
measured with the machine Lilith by the equation

Dsubtest= Smachine SLilith- (a.1)

Benchmark experiments on workstations 43

Test No. | Litlith || CompuPro (A) CompuPro (A) CompuPro (B) CompuPro (C
only (*$T-*) [only (*$T-*) | only (*$T-*)

a 321 0.55 0.46 1.33 1.10

b 334 0.53 0.41 1.36 1.04

c 422 0.55 0.56 1.27 1.42

d 187 0.27 0.23 1.24 0.95

e 130 1.14 1.08 1.08 0.43

f 87 0.92 0.9 0.94 0.39

g 109 0.55 0.39 1.33 1.03

h 89 0.37 0.36 0.84 0.78

[197 0.3 0.25 1.03 0.89

| 164 0.27 0.26 0.79 0.83

Kk 144 0.65 0.57 1.48 1.22

| 94 0.56 0.5 1.27 1.26

m 63 0.73 0.7 2.4 2.35

n 125 0.13 0.13 0.26 0.26

0 207 0.07 0.1 0.25 0.24

Table A.1: This table shows the relativember of iterations which could be executed for each subtest in
100 seconds related tioe test on Lilith which is referenced as 1 (cf. eqg. a.1). For the machine Lilith the
absolute values in seconds are given. These benchmark tests are Nmtkilz-2. The symbol (*$T-*)
marks tests which has made no index test (arrays etc.)

Test No. | CompuPro (D) PdP-11/23 | PdP-11/23| PdP-11/40| Alto 2
MP/M 8-16 not optimized optimized floppy-disk
a 0.89 1.06 2.04 0.57
b 0.84 0.92 1.51 0.55 0.35
c 0.88 0.66 0.63 0.55 0.41
d 0.43 0.44 0.45 0.29
e 1.86 0.29 0.29
f 1.47
g 0.88 0.69 0.77 0.5 0.29
h 0.6 0.12 0.29
i 0.49 0.92 0.62 0.47 0.22
] 0.44 0.13 0.22
k 1.05 0.84 1.26 0.26 0.28
| 0.9 0.82 1.02 0.31 0.34
m 1.17 0.84 0.84 0.17 0.89
n 0.21 1 1.3 0.53 0.43
0 0.18 0.17

Table A.2: This table shows the relativember of iterations which could be executed for each subtest in
100seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.

Benchmark experiments on workstations

Test No. | Macintosh | Macintosi | Macintosi | Macintosi | Mac Plug
floppy-disk | floppy-disk [floppy-disk | floppy-disk | floppy-disk
a 0.83 0.93 0.93 0.92
b 0.35 0.8 0.75 0.75 0.75
c 0.41 0.73 0.69 0.68 0.9
d 0.29 0.56 0.6 0.6 0.6
e 0.21 0.21 0.02 0.21
f 0.15 0.15 0.01 0.15
g 0.29 0.62 0.7 0.7 0.69
h 0.29 0.61 0.85 0.85 0.84
i 0.22 0.59 0.61 0.61 0.38
| 0.22 0.6 0.73 0.73 0.73
k 0.28 0.88 0.79 0.79 0.78
I 0.34 0.84 0.81 0.81 0.81
m 0.89 0.84 0.84 0.84 0.84
n 0.43 0.52 0.69 0.69 0.69
o] 0.17 0.26 0.02 0.02 0.02

44

Table A.3: This table shows the relativember of iterations which could be executed for each subtest in

100seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.
1 5-pass compiler Logitecﬁ; 1-pass compiler MacMETH/1.0; 3 1-pass compiler MacMETH/2.0;

Test No. [Mac Plus | Mac Plug |Mac Plus | Mac II1 Mac 14
floppy-disk | floppy-disk | only (*-T*)
a 0.93 0.95 0.94 4.45 4.47
b 0.75 0.75 0.76 3.75 3.75
c 0.69 0.69 0.69 3.53 3.53
d 0.6 0.61 0.6 2.83 2.83
e 0.02 0.21 0.22 0.11 0.77
f 0.01 0.1 0.02 0.7 0.46
g 0.7 0.7 0.7 3.23 3.25
h 0.85 0.85 0.85 3.89 3.89
i 0.61 0.61 0.61 2.77 2.78
j 0.73 0.73 0.73 3.33 3.34
Kk 0.79 0.79 0.79 2.39 2.4
I 0.81 0.81 0.81 3.06 3.05
m 0.84 0.84 0.84 3.56 3.56
n 0.69 0.69 0.69 2.96 2.97
0 0.02 0.02 0.02 0.07 0.07

Table A.4: This table shows the relativember of iterations which could be executed for each subtest in
100seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are

done in Modula-2. The symbol (*$T-*) marks tests which has made no index test (arrays etc.)

1 1-pass compiler MacMETH/2.0 with SANE MathLib;2 1-pass compiler MacMETH/2.3;
3 1-pass compiler MacMETH/2.2; 4 1-pass compiler MacMETH/2.2 with DMMathLib VO0.4;

Benchmark experiments on workstations 45

Test No. | KayPro 286 IBM PC AT|IBM PC AT | VAX 11-780 [VAX 8600
(no 80287) [(no 80287) | (with 80287)
a 1.11 1.12 1.13 1.56 6.54
b 1.17 1.15 1.18 1.80 6.29
c 1.16 1.16 1.17 1.66 5.69
d 1.05 1.05 1.06 1.07 3.21
e 0.08 0.08 0.42 3.46 10.77
f 0.15 0.16 0.34 2.87 6.90
g 1.02 0.13 1.02 0.92 3.67
h 0.66 0.66 0.66 0.56 1.69
[0.96 0.97 0.96 0.76 4.31
| 0.63 0.64 0.64 0.30 3.66
k 1.20 1.22 1.21 0.69 3.13
I 1.13 1.13 1.13 0.53 2.66
m 2.19 2.19 2.19 1.59 9.52
n 0.67 0.67 0.67 1.60 4.40
6] 0.05 0.14 0.14 0.21 0.14

Table A.5: This table shows the relativember of iterations which could be executed for each subtest in
100seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.

Test No. [VAX WS Il [VAX 310 | Ceres SUN SUN
3/50 3/160
a 2.18 2.05 1.7 4.08 5.06
b 2.10 2.06 1.37 3.59 4.15
c 1.66 1.78 1.02 2.53 3.18
d 1.07 1.07 0.89 1.94 2.5
e 3.08 3.85 2.05 0.75 0.94
f 3.45 4.6 2.26 0.61 0.77
g 0.92 0.92 1.41 2.87 3.43
h 1.12 1.12 1.08 2.22 2.63
i 1.02 1.27 0.78 2.75 3.3
i 1.22 1.22 0.74 2.13 2.46
k 0.69 1.04 1.22 3.33 4.11
| 1.06 0.53 1.15 3.43 4.27
m 1.59 1.59 1.86 2.43 2.83
n 1.60 2.4 1.43 3.86 4.74
0 0.21 0.24 0.75 0.54 0.7

Table A.6: This table shows the relativember of iterations which could be executed for each subtest in
100seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.

Secondwe give by the tables A.7 and A.8 an overview of the benchmark test described in
chap. 2 with a Pascal program.

Benchmark experiments on workstations

Test No. | CompuPro(B) CompuPro(C) CompuPro(D| Macintosh
)
only (*$T-*) | only (*$T-*) | (MP/M 8-16) | (floppy-disk)
a 1.07 0.3 0.84 1.21
b 0.97 0.24 0.65 0.59
C 1.01 0.55 0.69 0.58
d 1.01 0.11 0.38 0.54
e 0.09 0.07 0.03
f 0.08 0.07 0.02
g 0.88 0.37 0.66 0.66
h 0.56 0.34 0.47 0.81
[0.84 0.36 0.45 0.61
| 0.56 0.31 0.37 0.73
k 0.85 0.63 0.66 0.58
I 0.88 0.53 0.66 0.64
m 1.19 0.48 0.59 0.25
n 0.32 0.4 0.256 0.66
6] 0.08 0.1 0.12 0.04

46

Table A.7: This table shows the relativember of iterations which could be executed for each subtest in
100 seconds related to the Modulaghchmark test on Lilith which is referenced as 1 (cf. eq. a.1). These
benchmark tests are done in Pascal.shinebol (*$T-*) marks tests which has made no index test (arrays

etc.)

Test No. | VAX 11-780 | VAX 8600 | VAX WS Il | VAX 310
a 8.41 15.89 5.92 8.41
b 0.6 13.47 4.49 0.6
C 48.47 47.39 146.58 48.47
d 1.87 4.546 1.07 0.83
e 30.77 73.85 28.46 30.77
f 146.72 235.1 159.15 146.74
g 8.26 17.89 6.41 8.26
h 10.11 22.47 7.87 10.11
[2.79 6.6 2.03 2.79
] 3.35 7.32 2.44 3.35
k 18.75 35.42 13.89 18.75
| 27.13 63.83 21.28 27.13
m 1.27 11.11 1.59 1.27
n 6 19.2 4.8 6

0 0.13 0.26 0.1 0.25

Table A.8: This table shows the relativember of iterations which could be executed for each subtest in
100 seconds related to the Modula-2 benchmark tests onwtilith is referenced as 1 (cf. eq. a.1). These
benchmark test are done in Pascal.

Third, the tables A.9a, A.9b and, A.10 contain the data coming from the pro§iaugs
Ereal Freal andQueenandMacQueen

Benchmark experiments on workstations 47

Pascal Modula-2

Sieve Ereal Freal Sieve Ereal Freal
Lilith 4.24
Ceres 4.98 2.26 3.07
(10 MHz)
CompurPro 13.3
(280 8 MHz)
CompurPro (A)
CompurPro (A)
only (*$T-*)
CompurPro (B)
CompurPro (C) 2.75
CompurPro (D)
(8086 8 MHz)
CompurPro (D) 6.93 | 72 107
(8086/87 8 MHz)
Maclintosh 512 7.4 21 44 7.4
w/Floppy disk
Maclintosh 512 7.2 22.4 47.6
w/Floppy disk
Macintosh 512 6.4 22 47
w/Floppy disk
Macintosh 512 6.4 |257 324
w/Floppy disk
Macintosh Plus 6.5 22 47
w/Floppy disk
Macintosh Plus 6 221 360
w/Floppy disk
Macintosh Plus 6.4 23 75
w/Floppy disk
Mac 116 1.29 4.28 9.32
Mac 117 1.29 5.3 16.17
KayPro Il 37.2
(Z80 3 Mhz)
IBM PC 54 67 101
(8088 5 MHz)
IBM AT 54 67 101
(without 80287)
Cray - FORTRAN| 0.111

N

12.2 107.3

g owh OO0
w Voo wo

Table A.9a: Thigable shows the benchmark results (measured time in seconds) for the teSiewgth
Ereal, andFreal. The needed time is measured in seconds. The sign "t" marks tests whith fasteto be
measured by stop-watch means. The sign "" meartsal values - calculated time used. The symbol
(*$T-*) marks tests which has made no index test (arrays etc.)

1 5-pass compile|2, 1-pass compiler3, 1-pass compiler MacMETH/1.0; 4 1-pass compiler MacMETH/2.0;

S 1-pass compiler MacMETH/2.0 with SANE MathLib;

6 1-pass compiler MacMETH/2.2 with MathLib VO0.4;

7 1-pass compiler MacMETH/2.2 with MathLib VO0.5;

Benchmark experiments on workstations 48

Pascal Modula-2

Sieve Ereal Freal Sieve Ereal Freal
VAX 11-750 4.6
VAX 11-780 223 | T T 4.64 1.63 2
VAX 8600 1.2 T T 0.83 0.91
VAX WS I 1.96 0.15 0.03 2.82 1.69 2.3
VAX 310 223 | T T 2.6 2 1.63
SUN 3/50 1.45 6.2 11.5
SUN3/160 1.26 4.79 9.23
Apollo DN320 2.3
(68010 12MHz)
Apollo DN330 1.2 1200 1320
(68020 12MHZz)
AT&T B2/400 1.2 1200 1320
Olivetti M24 6.9 72.2 107.3
CDC 6400 $5.2 1.3 $5.9
Cray - FORTRAN] 0.111

Table A.9b: This tablshows the benchmark results (measured time in seconds) for the tesEewéh
Ereal, andFreal. The needed time is measured in seconds. The sign "" marks tests whith fasteto be
measured by stop-watch means. The sign "t" mearisal values - calculated time used. The symbol
(*$T-*) marks tests which has made no index test (arrays etc.)

1 5-pass compilelz; 1-pass compile@ 1-pass compiler MacMETH/1.0; 4 1-pass compiler MacMETH/2.0;

5 1-pass compiler MacMETH/2.0 with SANE MathLib;

6 1-pass compiler MacMETH/2.2 with MathLib VO.4;

7 1-pass compiler MacMETH/2.2 with MathLib V0.5;

Queen MacQueen
CompruPro 185
Maclntosh 65 1264
Smaky 100
MaclIntosh+ 1140

Table A.10: This tablshows the benchmark results for the tests with Queen and MacQueen. The needed
time is measured in seconds.

B. Benchmark programs

For the benchmark testiescribed in this publication, several versions of the benchmark
program were writter-or Modula-2 exist two versions, one for Macintosh computers un
der the simulation environment RAMSES, the other for baicis on SUN workstations
under RASS. There exist thr€eversions, one for SUN workstations (GNU compiler gcc
andg++ V 2.4(EPC, 1991) and two for Macintosh computers - written for MPW C. A
Pascal version for the IBM workstations was also realised.

We do not include the source code of the benchmark programs because these sources are
easily available viadifferent publications(Gilbreath, 1981; Wirth, 1981; Gilbreath &
Gilbreath,1983; Hinnant, 1984; Linton, 1986Dur benchmark programs as well as the

Benchmark experiments on workstations 49

simulation envionment RAMSES V2.2 and the Modula-2 compiMacMETH V3.2.2
are/is down-loadble via ftp or WWW from the following addresses:

ftp://ftp.ito.umnw.ethz.ch/pub
http://www.ito.umnw.ethz.ch

The benchmark programs are down-loadabje anonymous ftp from the directory
/pub/benchmark and RAMSES, MacMET#bm the directory /pub/pc/RAMSES and
/pub/mac/RAMSES, respectively.

ACKNOWLEDGEMENTS

This work has been supportbd the Swiss Federal Institute of Technology (ETH) Zurich
and by the Swiss National Science Foundation, grants0@1-35172 and 31-31142.91.
We thank espacially Dr. H. Lischke for her valueable comments and support.

5 The ip number of the SUNserver "baikal" is 129.132.80.130.

ftp://ftp.ito.umnw.ethz.ch/pub
http://www.ito.umnw.ethz.ch

BERICHTE DER FACHGRUPPE SYSTEMOKOLOGIE
SYSTEMS ECOLOGY REPORTS

ETH ZURICH

Nr./No.

1 FISCHLIN, A., BLANKE, T., GYALISTRAS, D., BALTENSWEILER, M., NEMECEK, T., ROTH, O. & ULRICH, M.
(1991, erw. und korr. Aufl. 1993): Unterrichtsprogramm "Weltmodell2"

2 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Stabilitat"

3 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Drosophila"

4 ROTH, O. (1990): Maisreife - das Konzept der physiologischen Zeit

5 FISCHLIN, A., ROTH, O., BLANKE, T., BUGMANN, H., GYALISTRAS, D. & THOMMEN, F. (1990): Fallstudie
interdisziplinare Modellierung eines terrestrischen Okosystems unter Einfluss des Treibhauseffektes

6 FISCHLIN, A. (1990): On Daisyworlds: The Reconstruction of a Model on the Gaia Hypothesis

7" GYALISTRAS, D. (1990): Implementing a One-Dimensional Energy Balance Climatic Model on a Microcomputer (out of print)

8 * FISCHLIN, A., & ROTH, O., GYALISTRAS, D., ULRICH, M. UND NEMECEK, T. (1990): ModelWorks - An Interactive Simulation Environment for Personal
Computers and Workstations (out of print— for new edition see title 14)

9 FISCHLIN, A. (1990): Interactive Modeling and Simulation of Environmental Systems on Workstations

10 ROTH, O., DERRON, J., FISCHLIN, A., NEMECEK, T. & ULRICH, M. (1992): Implementation and Parameter
Adaptation of a Potato Crop Simulation Model Combined with a Soil Water Subsystem

1 I#< NEMECEK, T., FISCHLIN, A., ROTH, O. & DERRON, J. (1993): Quantifying Behaviour Sequences of Winged Aphids on Potato Plants for Virus Epidemic
Models

12 FISCHLIN, A. (1991): Modellierung und Computersimulationen in den Umweltnaturwissenschaften

13 FISCHLIN, A. & BUGMANN, H. (1992): Think Globally, Act Locally! A Small Country Case Study in Reducing Net
CO7 Emissions by Carbon Fixation Policies

14 FISCHLIN, A., GYALISTRAS, D., ROTH, O., ULRICH, M., THONY, J., NEMECEK, T., BUGMANN, H. & THOMMEN,
F. (1994): ModelWorks 2.2 — An Interactive Simulation Environment for Personal Computers and
Workstations

15 FISCHLIN, A., BUGMANN, H. & GYALISTRAS, D. (1992): Sensitivity of a Forest Ecosystem Model to Climate
Parametrization Schemes

16 FISCHLIN, A. & BUGMANN, H. (1993): Comparing the Behaviour of Mountainous Forest Succession Models in a
Changing Climate

17 GYALISTRAS, D., STORCH, H. v., FISCHLIN, A., BENISTON, M. (1994): Linking GCM-Simulated Climatic Changes
to Ecosystem Models: Case Studies of Statistical Downscaling in the Alps

18 NEMECEK, T., FISCHLIN, A., DERRON, J. & ROTH, O. (1993): Distance and Direction of Trivial Flights of Aphids in
a Potato Field

19 PERRUCHOUD, D. & FISCHLIN, A. (1994): The Response of the Carbon Cycle in Undisturbed Forest Ecosystems to
Climate Change: A Review of Plant—Soil Models

20 THONY,J. (1994): Practical considerations on portable Modula 2 code

21 THONY, J., FISCHLIN, A. & GYALISTRAS, D. (1994): Introducing RASS - The RAMSES Simulation Server

22 GYALISTRAS, D. & FISCHLIN, A. (1996): Derivation of climate change scenarios for mountainous ecosystems: A
GCM-based method and the case study of Valais, Switzerland

23 LOFFLER, T.J. (1996): How To Write Fast Programs

24 LOFFLER, T.J., FISCHLIN, A., LISCHKE, H. & ULRICH, M. (1996): Benchmark Experiments on Workstations

* Out of print

25

26

27

28

29

30

FISCHLIN, A., LISCHKE, H. & BUGMANN, H. (1995): The Fate of Forests In a Changing Climate: Model Validation
and Simulation Results From the Alps

LISCHKE, H., LOFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over long time periods:
Derivation of methods

LISCHKE, H., LOFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over long time periods: A
comparison of methods

LISCHKE, H., LOFFLER, T.J., FISCHLIN, A. (1996): Aggregation of Individual Trees and Patches in Forest Succession
Models: Capturing Variability with Height Structured Random Dispersions

FISCHLIN, A., BUCHTER, B., MATILE, L., AMMON, K., HEPPERLE, E., LEIFELD, J. & FUHRER, J. (2003):
Bestandesaufnahme zum Thema Senken in der Schweiz. Verfasst im Auftrag des BUWAL

KELLER, D., 2003. Introduction to the Dialog Machine, 2" ed. Price,B (editor of 2™ ed)

Erhaltlich bei / Download from
http://www.ito.umnw.ethz.ch/SysEcol/Reports.html]

Diese Berichte konnen in gedruckter Form auch bei folgender Adresse zum Selbstkostenpreis bezogen werden /
Order any of the listed reports against printing costs and minimal handling charge from the following address:

SYSTEMS ECOLOGY ETHZ, INSTITUTE OF TERRESTRIAL ECOLOGY
GRABENSTRASSE 3, CH-8952 SCHLIEREN/ZURICH, SWITZERLAND

http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

