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1. Introduction

This paper deals with classical benchmark tests, which are one important part for the per-
formance evaluation of computers as well as of complex software.

Benchmark results can be used to test either specific functionality of compilers, e.g. costs of
integer and real multiplication, the general performance of the combination machine and
operating system as well as the performance of applications within a simulation environment
as e.g. RAMSES1 (Fischlin et al., 1988; Keller, 1989; Fischlin, 1991; Fischlin et al., 1994).

Here, we focus on testing the overall performance of the machines with benchmark pro-
grams. Our aim is to get information about the run-time behaviour of different platforms
(computers, operating systems, and emulations) and to compare the results with the per-

‡ Systems Ecology, Institute of Terrestrial Ecology, Department of Environmental Sciences, Swiss Federal
Institute of Technology ETHZ, Grabenstr. 3, CH-8952 Schlieren / Zürich, SWITZERLAND.

† Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Duebendorf,
Switzerland

1 RAMSES is an acronym for Research Aids for the Modelling and Simulation of Environmental Systems.
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formance examinations of the simulation software RAMSES and its batch version RASS2

(Thöny et al., 1995), which is treated in a separate report (Löffler & Fischlin, 1997). The
results will give essential information for the latter assessment, even though they may neit-
her be accurate nor optimal.

For instance, to such aims these data about computers and software are necessary for

• the decisions which platforms should be preferred for the future development of
RAMSES and RASS;

• potential performance improvements of RAMSES and RASS;

The presented benchmark experiments tie on a long tradition of established benchmark tests
(Wirth, 1981) with the advantage that we are able to compare the whole collected material
and get results out of a long expertise in these benchmark tests.
Nevertheless, we concentrate mainly to the new and thus for our aims relevant benchmark
experiments. Therefore the results of the older benchmark experiments are concentrated
shortly in the appendix A.

2. Materials and Methods

2.1 Machines, Compilers, and Compiler Options

The computers tested in the past are mainly those which are available at the ETH Zürich at
that time and the computers which we used for the actual benchmark tests are today often
used machines.

The late benchmark tests were performed on six Macintosh and three SUN workstations as
well as on two IBM workstations. The characteristics of the used machines are summarized
in the following three tables 2.1 to 2.3.

Macintosh IIfx Quadra
700

Quadra
950

PowerPC
8100/80

PowerBook
170

PowerBook
520 and 540c

CPU MC68030
(CISC)

MC68040
(CISC)

MC68040
(CISC)

PPC601
(RISC)

MC68030
(CISC)

68L040
(CISC)

FPU MC68882 Integrated Integrated Integrated MC68882 no
Rate 40 MHz 25 MHz 40 MHz 80 MHz no infor-

mation
66/33 MHz

System 7.01 7.01 7.01 7.12 7.01 7.11

Table 2.1: Characteristic data of the tested Macintosh machines.

2 RASS is an acronym for RAMSES Simulation Server.
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SUN workstations SPARCstation 10 SPARCserver 630 MP SPARCstation ipx
CPU SuperSPARC 2 x SuperSPARC FJMB86903
FPU Integrated Integrated Integrated
Rate 40 MHz 40 MHz 40 MHz
System SunOS 4.1.4 SunOS 4.1.2 SunOS 4.1.2

Table 2.2: Characteristic data of the tested SUN workstations.

IBM wokstations Intel 486 Intel Pentium
CPU 80486 Pentium
FPU 80487 (Integrated) Integrated
Rate 66 MHz 90 MHz
System DOS 6.21/Windows 3.1DOS 6.21/WFW 3.11

Table 2.3: Characteristic data of the tested IBM workstations. "WFW" is an abbreviation for "Windows for
Workgroups".

We used the programming languages Modula-2, Pascal, and C with different compilers
(cf. tab. 2.4), depending on the used platform.

Modula-2 C Pascal
Macintosh MacMETH V3.2.2 MPW C V3.3
SUN
Workstation

em2 V2.0.8 gcc/g++ V2.4

IBM Workstation Borland Pascal V7.0

Table 2.4: The used combinations of compilers and platforms.

Benchmark results are dependent on the hard- and software configuration of the tested ma-
chines. For example an e-mail system can strongly influence the execution of programs,
dependent e.g. on how often the mail server is contacted for new mail. This can strongly
distort the benchmark results. Hence, to get comparable information we configured the te-
sted computers similarly with respect to such applications, but besides left the machines in
their normal working state because we were interested in testing the computers as they
mainly were in everyday use. Therefore, we did not test optimized machines but standardi-
zed ones which are in practical use. That means, the end user of the machines is the main
perspective of the benchmark tests.

The used Modula-2 compiler MacMETH V3.2.2 (Wirth et al., 1992) is able to generate na-
tive code for the Motorola CISC processor family MC68. The MacMETH compiler
Compile generate native code for this CPU type (cf. tab. 2.1) and the MacMETH compiler
Compile20 additionally supports the FPU (cf. tab. 2.1) of these processor family, i.e.
Compile20 generate code for the MC68020 processor and run on hardware platforms
equiped with the MC68020/MC68881, the MC68030/MC68882, or the MC68040 proces-
sor. The compiler Compile40 of MacMETH which generate native code for the MC68040
processor was not tested. Therefore, on the machines with such a FPU only native code for
the FPU MC68020 was executed, i.e. the FPU of e.g. the Quadra 950 was not tested in its
fastest mode.
MacMETH V3.2.2 is not able to generate native code for the RISC processors used by the
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PowerPC family. Hence, all results produced on the tested PowerPC 8100/80 do not reflect
the true abilities neither of this machine nor of the PowerPC family in general.
The integer overflow and, except for the subtest h and j, the range checks were disabled. All
traps were enabled and for SANE all checks were enabled except the two options
'underflowHalt' and 'inexactHalt' (Wirth et al., 1992).

On the SUN workstation the EPC Modula-2 compiler em2 V2.0.8 was used with the
compiler options which enable the detection of range errors.
The information which are necessary for working with the debugger and the profiler was
not produced. During the compilation and linking (1) the production of all post mortem
diagnostics were suppressed and (2) all possible range checks were enabled (EPC, 1991).

For the MPW C V3.3 compiler the Apple's language extensions were enabled. The genera-
ted code was optimized for speed, but with no loop unrolling and without repeating global
propagation and redundant store elimination. (Apple Computer, 1993b; Apple Computer,
1993a). No native code for the PowerPC 8100/80 was generated.

For the GNU compiler gcc/g++ V2.4 the information which are necessary for working with
the debugger and the profiler was not produced. The benchmark program was compiled and
linked with an optimization level 2. For a description refer to the GNU manual (foundation,
1993) and to the man pages. The generated code was not optimized for the processors of
SUN workstations.

With Borland Pascal V7.0 native code for the 80286/80278 CISC processor of Intel was
generated from the benchmark programs. Information for the debugger and the profiler was
not produced. Range, stack, pointer, and overflow checks were disabled, and I/O checks
were enabled. For the subtests h and j the range checks were also enabled (Borland
International, 1992).

2.2 Standard Benchmark Tests

We define the benchmark test in a traditional way as a set of instructions which measures
how well the hardware and software of a computer system perform together. Generally,
benchmarks can either test individual, specific functions of a compiler or operating system
(e.g. function-call overhead) or they can test the general performance of the machine by ex-
ecuting a number of operations (e.g. looping, searching etc.).

Such measurements can be executed in two ways, by

• counting the number of operations executed within a fixed time;

• fixing the number of operations and stopping the time which the program needs
for the execution;

We preferred the first version whereby in the earlier tests a human monitored and interrup-
ted the computation after a fix defined run-time, for example after 100 seconds. For the new
tests we gave this control to the benchmark program and were therefore able to run the
benchmark application at times where the machines usually are not used and hereby to run
more tests.

The earlier tests used the traditional benchmark set (Wirth, 1981) which is shortly described
in table 2.5. By this test set the basic operations which are often used in a program is
covered.
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Test (also used)Short description of the benchmark tests
a (1) Empty REPEAT
b (2) Empty WHILE
c (3) Empty FOR
d (4) Integer arithmetic: (x * y) DIV (z + u)
e (5) Real arithmetic: (x * y) / (z + u)
f (6) SIN, EXP, LN, SQRT
g (7) Array access a[ ]=b[ ], b[ ]=a[ ]
h (8) Test g with bounds tests
i (9) Matrix access a[ ][ ]=b[ ][ ]
j (10) Test i with bound tests
k (11) call of an empty procedure
l (12) call of an empty procedure with 4 parameters
m (13) Array copying
n (14) Access via pointers
o (15) Reading a disk stream of integer values

Table 2.5: Short description of the traditional benchmark tests which includes often used compiler instruc-
tions and integrated functions. These tests cover the basic operations which are often used in a program.
Note, in figures 3.1 to 3.4 the numbers 1 to 15 are used instead of a to o.

Beside the tests listed in table 2.5 we performed an additional class of tests which was cho-
sen to get more detailed information about widely used operations. This additional test set is
shortly described in table 2.6.

This additional test class was introduced because the results of first benchmark experiments
with RAMSES model-definition-programs (MPDs) as the stochastic forest model
FORCLIM  (Bugmann, 1994; Bugmann & Fischlin, 1994) or the deterministic forest model
DISCFORM (Lischke et al., 1996) revealed that beside the traditional benchmark test set
additional tests are advantageous to assess the run-time behaviour of these programs.
Therefore, we inspect the run-time behaviour of some few procedures as e.g. sinus or
square root computation which seems essential to our aims. The data from this additional
benchmark test set can help to interpret the run-time measurements or to improve the per-
formance of model-definition-programs (MPDs). Particularly, this selection is mainly re-
stricted to our special aims and hence not representatively chosen.
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Test (also used)Short description of the benchmark tests
N1 (16) Empty loop with fast computation of i := i - 1
N2 (17) Sinus function
N3 (18) Arcus tangens function
N4 (19) Exponential function function
N5 (20) Natural logarithm function
N6 (21) Square root function
N7 (22) Type conversion: real to longint
N8 (23) Random (integer) number generation
N9 (24) Random (real) number generation
N10 (25) Absolute function
N11 (26) Type conversion: real to integer
N12 (27) Type conversion: integer to real
N13 (28) Power (x^r, x and r real)
N14 (29) Power (x^i, x real, i integer)
N15 (30) Maximum of two real values
N16 (31) Maximum of two integer values
N17 (32) Access of real values
N18 (33) Reading a disk stream of real values

Table 2.6: Short description of the additional benchmark set which includes often used routines. These addi-
tional test set is arranged for special purposes of RAMSES model-definition-programs (MDPs) and therefore
not representatively chosen.
Note, in figures 3.1 to 3.4 the numbers 16 to 33 are used instead of N1 to N18.

Because of incompatibilities of different programming languages some language features
had to be replaced by equivalent constructions. For example, type conversion from integer
to real variables have to be made explicitly in Modula-2 by the procedure FLOAT whereas
in C this conversion can be made explicitly by the cast operator (int) or implicitly by the
compiler. Such differences as explicit or implicit type conversion are summarized in the tab-
les 2.7 and 2.8.

For the programming languages Modula-2 and Pascal we followed the implementation of
Wirth (Wirth, 1981) because of possible comparisons of the long series in these benchmark
tests, whereas for the language C there is no such restriction. Hence, for the comparisons of
the results gained by the C and Modula-2 benchmark test, the differences of the imple-
mentations which are described in the following has to be in mind.

For the traditional benchmarks the differences between the Modula-2, Pascal, and C version
are minimal. They consist in the use of the

• operators --i and ++i  in C vs. i:=i-1  and i:=i+1  in Modula-2 and Pascal for
counting the loops in the subtests a to o. The measurements for the C benchmark
version showed that it doesn't matter whether the operator ++i  or i=i+1  respective
--i or i=i-1 is used (cf. tab. 3.18).

• system procedure read in Pascal vs. procedure GetInt from the Module DMFiles
of the Dialog Machine V2.2 (Fischlin, 1986; Vancso-Polacsek et al., 1987;
Fischlin et al., 1988; Keller, 1989; Fischlin, 1991; Fischlin et al., 1994) in
Modula-2 vs. the library procedure fscanf in C for the subtest o (reading disk stre-
ams);
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• element wise array copying in C vs. direct array copying (by the construction
array1[ ] := array2[ ] ) in Modula-2 and Pascal for subtest m;

• do while loop in C vs. repeat until loop in Modula-2 and Pascal for all subtests ex-
cept the subtest c;

Test no. Modula-2 Pascal C
a to o i := i - 1; such as Modula-2 --i;
c and d i := i + 1; such as Modula-2 ++i;
a, b, d to o repeat ... until ... such as Modula-2 do { ... } while (not ...)
m array1 := array2; such as Modula-2 for (...)

{array1[] := array2[]}
o GetInt ( ... ); read ( ... ); fscanf ( ... );

Table 2.7: Summarization of the differences between the programming languages Modula-2, Pascal, and C
in the additional benchmark test set.
The measurements for the C benchmark version showed that it doesn't matter whether the operator ++i  or
i=i+1  respective --i or i=i-1  is used (cf. tab. 3.18).

Another difference are the compiler options which are different for the used compilers. We
used the available compiler options for avoiding array index-, subrange-, pointer- etc. checks
to perform the tests h and j.

For the additional test class, the differences between the benchmark versions for the lan-
guages (cf. tab. 2.8) Modula-2, Pascal, and C stem from not existing built-in functions of
the compilers as well as from testing library procedures. For some cases, library procedures
were not available and hence had to be defined in the benchmark programs.
For the Modula-2 benchmark version we took the procedures RandomReal, RandomInt,
POWER, POWERI, Rmax, Imax, and GetReal from the Dialog Machine V2.2.

The results coming from these benchmark versions are used to get an impression of the dif-
ference in the run-time behaviour of Modula-2 vs. C and to compare the IBM with the SUN
workstations.
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Test No. Modula-2 Pascal C
N7 Entier Round (int) floor
N8 RandomInt Trunc (Random) (int) rand
N9 RandomReal Random rand
N11 TRUNC such as Modula-2 (int) ceil
N12 FLOAT implicit type conversion implicit type conversion
N13 POWER RPot () pow (real,real)
N14 POWERI RIPot () pow (real,int)
N15 Rmax dMax dMax
N16 Imax iMax iMax
N18 GetReal read fscanf

Table 2.8: Summarization of the differences between the Modula-2, Pascal, and C benchmark versions of
the additionally measured tests. The procedures which are set in italic are standardly implemented in the
benchmark program.
These additional tests were introduced to obtain more data to interpret the run-time measurements or to im-
prove the performance of RAMSES model-definition-programs (MDPs). Particularly, this selection is
mainly restricted to our special aims and hence not representatively chosen.

2.3 Test Conditions

For a good evaluation of computer systems, different factors must be taken into considera-
tion which can strongly influence the programmer's productivity. Therefore the aims of the
new benchmark examinations are quite numerous. Beside the run-time behaviour of differ-
ent platforms, programming languages as well as the contrast of constructions such as dif-
ferent loops in Modula-2 vs. in C or one- vs. two dimensional array handling etc. (cf.
tab. 3.2 and 3.18), we are interested in features such as measuring the effects of the

• SANE3 library of Apple (Apple Computer, 1986);

• extended compiler of MacMETH (Wirth et al., 1992) which generates native code
for the MC68020, MC68881/2, and MC68040 co-processor;

• optimized library DMMathLibF of the Dialog Machine V2.2 for the co-proces-
sors MC68020, MC68881/2, and MC68040;

• system extensions which are included in the system of a Macintosh computer to
extend the functionality of a Macintosh. These extensions are executed as back-
ground processes which can affect the run-time behaviour of applications.

• network. For example, the effect of programs such as e-mail which periodically
contact a server via a (local) network can strongly influence the run-time behaviour
of applications.

• FPU software emulation for the PowerPC 8100/80 combined with non-native code
applications which needs a co-processor. This FPU software emulates a
mathematical co-processor which is not included in some computers. The available
FPU software for these tests is the shareware SoftwareFPU V3.02 and V3.03 as
well as PowerFPU V1.01;

3 SANE is an acronym for Standard Apple Numeric Environment.
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• the SANE library of Apple for the PowerPC 8100/80.

2.4 Benchmark Algorithm

For each subtest a to o respective N1 to N18 the benchmark algorithm determines the
number of iterations which can be exactly executed in a given (fixed) run-time tfix , e.g. 100
seconds. This number of iterations is iteratively calculated by the formula

nκ = nκ−1 * tfix / ∆tκ−1, κ > 1

with ∆tκ−1 the measured run-time. The finite sequence (nκ)κ>0 of iteration numbers starts
with the chosen value n0 and closes with a number nγ for which the criterion tfix = ∆tγ is
fulfilled.

2.5 Sensitive Tests and Accuracy

The benchmarks are affected by errors of the time measurement. By giving the control of
this time measurement to the benchmark program we eliminated the errors coming through
the unreliability of stopping the time by hand. As a consequence of the time measurement
algorithm described above, the best relative accuracy we can get is given by the formula

arel = aabs / tfix, (2.1)

with aabs the absolute accuracy, and tfix  is the fixed time for which we want to know how
many iterations of each subtest can be executed.
The absolute accuracy aabs of the time measurement is one second, due to the implementa-
tion of the Module DMClock of the Dialog Machine V2.2. Hence we have a maximal rela-
tive accuracy arel of

• 1% for tfix  = 100 seconds;

• 0.2% for tfix  = 500 seconds;

For most subtests the time was fixed to 100 seconds, but for some sensitive test to 500 se-
conds. By sensitive tests we mean those whose effects on the number nrun of repetitions (of
each subtest) for tfix = 100 seconds are hardly to recognize, i.e. in the order of magnitude
of the relative error. Then we try to minimize the error by increasing the time tfix .
Afterwards, the result of these sensitive benchmark tests were normalized to 100 seconds in
order to be able to compare these results with tests under other conditions, too.

Mainly, the results of the subtests show a clear trend and can thus directly be interpreted
and compared. For sensitive tests in the contrary it is not always possible to compare the re-
sults of the different subtests in this way. For such cases we used the criteria described in
the following.

The number

erel = nrun * (aabs / tfix) = nrun * arel (2.2)

is an estimation of the error band width of the benchmark measurement, whereby nrun is the
measured number of iterations of a subtest which is executed within the time tfix . To get an
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impression whether the difference of two runs is significant related to the error erel, that
means to find out if there is a recognizable effect in the measurement, we use the relation

rrel = 100 * (nrun2 - nrun1) / erel1 (2.3a)

which is an estimation (in percent) for how many times faster or slower the run was under
the different conditions, i.e. whether the difference ∆nrun = nrun2 - nrun1 is a significant
measurement related to the error band width erel1 of the iteration number nrun1. Thereby
nrun1 and nrun2 are the measured numbers of iterations of a subtest under different conditi-
ons, which are executed within the time tfix . For our purposes we use the following two
numbers

reffect = rrel / 100 (2.3b)

and rsign = sign(reffect). (2.4)

Thus, if reffect > 1 we can assume that we measured an effect and therefore that the run with
iteration number nrun2 is measurably faster than the run with the iteration number nrun1.
Otherwise we assume that the measured difference lies in the error band width of the first
run.

The number rsign shows whether the second run was faster (rsign > 0) or slower (rsign < 0)
and defines therefore the border of significance (|reffect| ≥ 1) for the different runs.

2.6 Standard Benchmark Tests with the Application Speedometer

The Application Speedometer V4.02 of Scott Berlfield offers different standard benchmark
tests for Macintosh computers such as Quicksort, Queens, Sieve etc. 
We included tests with this application for Macintosh computers, too.

Tests with Speedometer V4.02 can not be taken too seriously, because without the source
code of this application it is impossible to make a decision about the quality of the resulting
benchmarks. Nevertheless, these tests can help to complete or revise the view of the tests
with our own benchmark program.

The results from these tests are summarized in chap. 3.2.

3. Results

We give a summarization of the results of the benchmark tests completed in the last decade.
Thereby, the older benchmark test results are treated into the appendix A in a short and
compressed way without graphical representations and statistical analysis of the data.

The new benchmark results are completely described in this chapter. These results are given
in absolute speed, measured in number of iterations within the time tfix of 100 seconds, or
in percent speed. Because of the large amount of data coming out of the many benchmark
runs, we extracted the results into mean values M (of the percentage values) if this is jus-
tified by the behaviour, i.e. significant results of all subtests with respect to the error band
width. Otherwise we give the additional information of the differences in these subtests, too.
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The extraction of the data are accomplished in two ways. First, we use the mean values of all
subtests of a tested machine and compute by the equation

M = 100 * Mtest / Mreference (3.1)

how many times faster or slower a run is. The factor M represents the percentage relation of
Mtest (mean of the test over all subtests) to Mreference (mean of the test over all reference
subtests). Mreference is the reference to which the value Mtest is related.

Second, the difference of each subtest a to o and N1 to N18 between the benchmark test
series on several machines or on the same machine under different conditions are computed
by the formula

Dsubtest = 100 * Smachine / Sreference - 100 (3.2)

where Sreference is the reference to which the value Smachine is related. The number Dsubtest
represents the absolute gain or loss of speed in percent. Note, formula (3.2) can be written
as Dsubtest = 100 * (Smachine / Sreference - 1) = 100 * (Smachine - Sreference ) / Sreference.

Then, the presented values of the benchmark test series are the mean, standard deviation,
minimum, and maximum of the values Dsubtest of all subtests.

3.1 The new benchmark tests

First, we extract general statements (cf. chap. 2.3) from the two benchmark test sets (cf.
tab. 2.5 and 2.6). Therefore we use the data obtained by the benchmark run (Modula-2
version of the benchmark program) on a Quadra 700, whereby this benchmark test is per-
formed by the combination Sane on/Comile20 off/DMMathLib (cf. tab 3.4 and tab. 4.5).
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Test No. of iterations Test No. of iterations
a N1
b N2
c N3
d N4
e N5
f N6
g N7
h N8
i N9
j N10
k N11
l N12
m N13
n N14
o N15

N16
N17
N18

Table 3.1: This table shows the absolute number of iterations which could be executed for each subtest (cf.
tab.2.5 and 2.6) for tfix = 100 seconds on a Quadra 700 running the Modula-2 version of the benchmark
program. This benchmark test is performed by the combination Sane on/Comile20 off/DMMathLib (cf.
tab. 3.4 and 4.5).

The table 3.2 contains information about various differences of the run-time behaviour of
program constructions as e.g. of different loop constructions, using compiler options for
checking ranges etc. In each group we used eq. 3.1 and refer to the slowest run as 100%.
For the comparison of one dimensional array vs. multi-dimensional array access and array
vs. list access the different implementations related to the assignments of variables of these
subtests has to be taken into account.
Refer to table 3.18 which contains the same information for the C benchmark test.
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compiler opti-
ons

I type conversion II loops III

g - no options N12 N1
h N11 a
i - no options N7 b
j c
integer vs. real
disk streams

IV built-in function
Inc(i)

V integer vs. real
arithmetic

VI

o a d
N18 N1 e
procedure
calls

VII 1-D array vs.
2-D array

VIII array vs. pointer IX

k g g
l i n

Table 3.2: This table contains in nine boxes I to IX  information about various differences of the run-time
behaviour of program constructions in the programming language Modula-2 in percent (cf. eq. 3.1) to the
slowest run in each group which is the reference, i.e. 100%. These data are extracted from table 3.1.
Refer to table 3.18 which contains the same type of data for the C benchmark test.

Second, we present the data of the tests executed under various conditions (cf. chap. 2.3) as
using the SANE library or not etc. We examined the most important combinations of the
options SANE on/off, using Compile/Compile20 of MacMETH and the library
DMMathLib/DMMathLibF from the Dialog Machine V2.2. The runs were performed in
the programming language Modula-2 (by the compiler MacMETH) on a Quadra 950.
Table 3.3 shows the absolute data for the most important combinations of these options,
whereas table 3.4 shows the mean value of the subtests in percentage difference (cf. eq. 3.2)
related to the option combination SANE on/Compile20 off/DMMathLib which performed
the slowest run.
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Test no.

Table 3.3: This table shows the absolute number of iterations which could be executed for each subtest for
tfix = 100 seconds for essential possibilities of mathematical choices. These choices are SANE on/off,
using Compile/Compile20 of the Modula-2 compiler MacMETH, and the libraries DMMathLib/
DMMathLibF of the Dialog Machine V2.2.
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DMMathLi
b

DMMathlibF

Compile20 Compile20 Compile20
on off on

SANE on 61 0 476
SANE off 106 40 498

Table 3.4: Results of different options SANE on/off, Compile20 on/off, and DMMathLib or the fast ver-
sion DMMathLibF for the benchmark tests. These results are the mean value of the subtests in percentage
difference (cf. eq. 3.2) given in tab 3.3. The results are related to the option combination SANE
on/Compile20 off/DMMathLib (bold faced in the table) which is chosen as reference value because this
combination performed the slowest run. 
For example, the combination SANE off/Compile20 on/DMMathLib is in mean 106% faster than the refe-
rence.

These three options (SANE on/off, using Compile or Compile20, and using DMMathLib or
the fast version DMMathLibF) are essential for mathematical operations using MacMETH
and RAMSES. However, the mean values of table 3.4 include all subtests, i.e. mathematical
and non-mathematical ones. Therefore, in table 3.5 we look only to the behaviour of the
mathematical subtests f, N2 to N7, N13 and N14 (cf. tab. 2.5 and 2.6), giving the same view
such as in table 3.4.

DMMathLib DMMathLib DMMathlibF
Compile20 Compile20 Compile20

Test no. SANE on off on
f: Combination of on 0
mathematical functionsoff
N2: Sinus on 0

off
N3: Arcus Tangens on 0

off
N4: Exponential on 0
       function off
N5: Logarithmical on 0
       function off
N6: Square root on 0

off
N7: Type on 0
       conversion off
N8: Power with on 0
       real values off 1
N9: Power with on 0
       integer values off

Table 3.5: Results of different options for the benchmark tests for the mathematical subtests from tab 3.3.
These results are given in percentage difference (cf. eq. 3.2) related to the option combination SANE
on/Compile20 off/DMMathLib (bold faced in the table) which is the reference of table 3.4, too. 
For example, for the subtest N6 (square root) the combination SANE on/Compile20 on/DMMathLibF is
769% faster than the reference.
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Third, we examined the influence of extensions (cf. chap. 2.3) used by a Macintosh and of a
network connection (cf. chap. 2.3) on the run-time of the benchmark program. The runs
were designed with benchmark program written in the programming language Modula-2
(using MacMETH) on a Quadra 700.
We give the mean, standard deviation, minimum, and maximum value over all subtests of the
results in table 3.6 and by the graphics 3.1, 3.2 and 3.34 we show the values rtrend and rsign
(cf. chap. 2.5) for all subtests.

The results of the subtests under the different conditions are difficult to interpret even if we
run the tests with tfix = 500 seconds; they are for some subtests small, for others rather big
and for some subtests they are positive and for others negative so that they might be due to
the error in the time measurements (cf. eq. 2.2).
This is regognizable in the graphics 3.1, 3.2, and 3.3 which look closer into the test results.
We detect that the high gain in run-time is contributed mostly from the mathematical
subtests.

Table 3.6: The influence of extensions (cf. chap. 2.3), the network connection, and both: using extensions
and being connected with a network, for a Macintosh Quadra 700. The run-time behaviour of the benchmark
program is measured as mean run-time of all subtests (cf. chap. 2.2, tab. 2.5, and 2.6) in percent (cf.
eq. 3.2) related to using extensions and being connected to a network.
For example, the measurements yield that not using extension increase the run-time in mean of about 396
percent.

4 In these graphics the subtests are numbered from 1 to 33 which represent the marking a to o and N1 to
N18.
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Figure 3.1: The values reffect (cf. eq. 2.3b) represented by bars and rsign (cf. eq. 2.4) repre-
sented as line with squares show for each subtest (cf. chap. 2.2, tab. 2.5, and 2.6) the measu-
red differences between using extensions or not (cf. chap. 2.3). The squares lying at 1 or -1
give also the border for which the subtests can be assumed as significantly faster (values > 1)
or slower (values < 1).
For example, the mathematical subtests f, N2 to N7, N13, and N14 seem to performe faster
for the configuration "not using extensions". Since the results passed the border rsign, they
are assumed as significant.
Note, the subtests a to o and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).

Figure 3.2: The values reffect (cf. eq. 2.3b) represented by bars and rsign (cf. eq. 2.4) repre-
sented as line with squares show for each subtest (cf. chap. 2.2, tab. 2.5, and 2.6) the measu-
red differences between being connected to a network or not. The squares lying at 1 or -1 give
also the border for which the subtests can be assumed as significantly faster (values > 1) or
slower (values < 1).
For example, the mathematical subtests f, N2 to N7, N13, and N14 seem to performe faster
for the configuration "not connected to a network".. Since the results passed the border rsign,
they are assumed as significant.
Note, the subtests a to o and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).
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Figure 3.3: The values reffect (cf. eq. 2.3b) represented as bars and rsign (cf. eq. 2.4) repre-
sented as line with squares show for each subtest (cf. chap. 2.2, tab. 2.5, and 2.6) the
influence of not using extensions (cf. chap. 2.3) combined combined with not being
connected to a network. The squares lying at 1 or -1 give also the border for which the
subtests can be assumed as significantly faster (values > 1) or slower (values < 1).
For example, the mathematical subtests f, N2 to N7, N13, and N14 seem to performe faster
for the configuration "not using extensions and not connected to a network", but since no re-
sult passed the border rsign, the results can not be assumed as significant.
Note, the subtests a to o and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).

Fourth, the results of the benchmark runs on the PowerPC 8100/80 using several software
emulation programs (cf. chap. 2.3) for the FPU or not is given in table 3.7, in which the
mean, standard deviation, minimum, and maximum value over all subtests of the generated
results are included. The runs were designed with the benchmark program written in the
programming language Modula-2 (MacMETH) on a PowerPC 8100/80. Additionally, fi-
gure 3.4 shows the influence of the PowerFPU V1.01 vs. using no such emulation for each
subtest.

This results show clearly that the shareware SofwareFPU V3.02 and V3.03 allows to run
programs which need a FPU on a PowerPC 8100/80 but without the performance which a
co-processor adds to a computer. In contrary, the shareware PowerFPU V1.01 yields
additionally a significant increase in the run-time behaviour of applications which needs a
FPU.

For details, each subtest for the case using PowerFPU is shown in figure 3.4 in which the
values rtrend and rsign are given related to the case of using no software emulation. As
suspected, figure 3.4 shows that the gain in run-time is realized in the mathematical subtests
(cf. chap. 2.2).
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SofwareFPU V3.02 SofwareFPU V3.03PowerFPU V1.01

Table 3.7: The influence of using software emulation or not with the shareware SoftwareFPU V3.02,
SoftwareFPU V3.03, and PowerFPU V1.01 to the run-time behaviour of the benchmark program on a
PowerPC 8100/80. These values over all subtests are given in percent (cf. eq. 3.2) related to the run with-
out using such a software emulation.
For example, the measurements yield that using PowerFPU V1.01 increase the speed in mean of about 96
percent.

Figure 3.4: The values reffect (cf. eq. 2.3b) represented as bars and rsign (cf. eq. 2.4) repre-
sented as line with squares show for each subtest (cf. chap. 2.2, tab. 2.5, and 2.6) the
influence of using the FPU emulation PowerFPU V1.01 on a PowerPC 8100/80. The
squares lying at 1 or -1 give also the border for which the subtests are significantly faster
(values > 1) or slower (values < 1). 
For example, the mathematical subtests f, N2 to N7, N13, and N14 seem to performe faster
if the software emulation PowerFPU V1.01 is used. Since the results passed the border rsign,
they are assumed as significant.
Note, the subtests a to o and N1 to N18 are declared as 1 to 33 (cf. tab. 2.5 and 2.6).

Fifth, the results for the SANE library for the PowerPC 8100/80 (cf. chap. 2.3) is given in
table 3.8. The runs were designed with the benchmark program written in the programming
language Modula-2 (MacMETH) on a PowerPC 8100/80. This test run were performed by
the combinations SANE on/Compile/DMMathLib vs. SANE off/Compile/ DMMathLib.
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all subtests

Table 3.8 The run-time behaviour of the SANE library on a PowerPC 8100/80. The values of the subtests
are given in percent (cf. eq. 3.2) related to the run using SANE. For example, not using SANE is in mean
24% faster for the mathematical subtests. 
In this test the mathematical combinations SANE on/Compile/DMMathLib vs. SANE
off/Compile/DMMathLib were used.

Sixth, we come to the performance of the different machines (and therefore of the combi-
nation computers, operating systems, and emulations as it is mainly in every day use) which
are used for the benchmark test. Here we use three sights of view.

First, we took the means of all subtests of each tested machine and compute by eq. 3.1 the
gain and loss of the performance. The two tables 3.9 and 3.10 and figure 3.5 show how
many times faster or slower the tested machines are related to the Macintosh IIfx which is
referenced as 100%. Note, the Modula-2 benchmark program for the Macintosh computers
was configured by the options SANE on/Compile/MathLib (cf. chap. 2.1, tab. 3.4 and 3.5).
For the configuration of the used compilers on the SUN and IBM workstations refer to
chap. 2.1.
Note, for these tests the software emulation SoftwareFPU V3.02 was used, since the soft-
ware emulation PowerFPU V1.01 was not available at this time. With the results which are
summarized in table 3.7 and figure 3.4, the performance of the PowerPC 8100/80 with
PowerFPU V1.01 can be assumed as similar as the Quadra 700.

Quadra 700 Quadra 950 PowerPC
8100/80

PowerBook
170

PowerBook
520 and 540c

158 217 103 60 215

Table 3.9: The mean gain of performance of the Macintosh computers related to the Macintosh IIfx, i.e.
100%. These values are the average of all subtests related to 100% for the Macintosh IIfx. For example, the
Quadra 950 is 217% faster than the Macintosh IIfx. 
Note, we used the options SANE on/Compile/MathLib (cf. chap. 2.1, tab. 3.4 and 3.5). 
The PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf. tab. 3.7, 3.8, and
fig. 3.4). With the results which are summarized in table 3.7 and figure 3.4, the average performance of the
PowerPC 8100/80 with PowerFPU V1.01 can be assumed as similar as the Quadra 700.

SPARCstation
10

SPARCserver
MP 630

SPARCstation
ipx

IBM (486) IBM (Pentium)

566 237 212 279 663

Table 3.10: The mean gain of performance of the SUN and IBM workstations related to the
Macintosh IIfx, i.e. 100%. These values are the average of all subtests related to 100% for the
Macintosh IIfx. For example, the IBM (Pentium) is 663% faster than the Macintosh IIfx. 
For the configuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1.
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Figure 3.5: The mean gain of performance of all computers related to the Macintosh IIfx,
i.e. 100%. These values are the average of all subtests related to 100% for the
Macintosh IIfx. For example, the SPARCstation 10 is 566% faster than the Macintosh IIfx.

Note, the benchmark on the Macintosh computers were not performed in the fastest way; we
used the options SANE on/Compile/MathLib (cf. chap. 2.1, tab. 3.4 and 3.5). For the con-
figuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1. 
The PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf.
tab. 3.7, 3.8, and fig. 3.4). With the results which are summarized in table 3.7 and figure
3.4, the average performance of the PowerPC 8100/80 with PowerFPU V1.01 can be assu-
med as similar as the Quadra 700.

Second, with eq. 3.2 we looked more detailed at the run-time behaviour of each subtest.

The differences between the several machines in relation to the subtests a to o and
N1 to N18 are in parts quite big. The following two tables 3.11 and 3.12 give more detailed
information. These data series are computed by eq. 3.2 (with Sreference = SIIfx) with which
the resulting data Dsubtest for each subtest is computed with Smachine and SIIfx the values of
a subtest of the special machine and the Macintosh IIfx, respectively.
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Test no.

Table 3.11: This table shows (in percent) for every subtest which Macintosh computer is faster or slower
as the reference machine Macintosh IIfx, i.e. 100%. High values are set in italic. 
The used configuration is (cf. chap. 2.1, tab. 3.4 and 3.5) Sane on/Compile/DMMathLib. Note, for these
tests, the PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf. fig. 3.4).
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Test no.

Table 3.12: This table shows (in percent) for every subtest which SUN and IBM workstation is faster or
slower as the reference machine Macintosh IIfx, i.e. 100%. Extremely high values are set in italic. 
For the configuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1.

The data series of tables 3.11 and 3.12 are now condensed to mean values, standard de-
viations, minima, and maxima. Tables 3.13 and 3.14 show these values for each machine.
The information of tables 3.11 and 3.12 are represented as box plots in figures 3.10a
and 3.10b, too.
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Table 3.13: The mean value, standard deviation, minimum and maximum value extracted from table 3.11
of all subtests for the Macintosh computers related to 100% for the Macintosh IIfx. 
The used configuration is (cf. chap. 2.1, tab. 3.4 and 3.5) Sane on/Compile/DMMathLib. Also, for these
tests, the PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf. tab. 3.7, 3.8,
and fig. 3.4).

Table 3.14: The mean value, standard deviation, minimum and maximum value (extracted from tab. 3.12)
of SUN and IBM workstations related to 100% for the Macintosh IIfx. 
For the configuration of the used compilers on the SUN and IBM workstations refer to chap. 2.1.
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Figure 3.10a: The data series of the tables 3.13 and 3.14, and therefore the extracted data of
the tables 3.10 and 3.11, are represented as box plots. 
The used configuration is (cf. chap. 2.1, tab. 3.4 and 3.5) Sane on/Compile/DMMathLib.
Also, for these tests, the PowerPC 8100/80 had included the software emulation
SoftwareFPU V3.02 (cf. tab. 3.7, 3.8, and fig. 3.4).



Benchmark experiments on workstations 26

Figure 3.10b: The data series of tables 3.13 and 3.14, and therefore the extracted data of tab-
les 3.10 and 3.11, are represented as box plots. 
For the configuration of the used compilers on the SUN and IBM workstations refer to
chap. 2.1.

Third, on the base of the values given in tables 3.11 and 3.12 we compute the mean,
standard deviation, maximum, and minimum along all tested machines. These values are
shown in table 3.15. Figures 3.11 to 3.14 show the information contained in this table as
box plots for the several machines.
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Test no. Mean Std. Deviation Min Max
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15
N16
N17
N18

Table 3.15: On the base of the values given in tables 3.11 and 3.12 the mean, standard deviation, maxi-
mum and minimum of along all tested machines are represented in this table.
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Figure 3.11: This figure shows the mean, standard deviation, maximum, and minimum of
the values in table 3.11. The box plots represent only the mean, standard deviation, maxi-
mum, and minimum from the tested Macintosh computers. Note, for these tests, the
PowerPC 8100/80 had included the software emulation SoftwareFPU V3.02 (cf. fig. 3.4).
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Figure 3.12: On the base of the values given in tables 3.11 and 3.12 the mean, standard de-
viation, maximum, and minimum of along all tested machines (cf. tab. 3.14) are represented
as box plots. Note, for these tests, the PowerPC 8100/80 had included the software emula-
tion SoftwareFPU V3.02 (cf. fig. 3.4).
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Figure 3.13: This figure shows the mean, standard deviation, maximum, and minimum of
the values in table 3.12 as box plots of the tested SUN and IBM workstations.

In order to complete the tests, we examined also the influence of seceral options (SANE
on/off, using Compile/Compile20 of MacMETH and the library
DMMathLib/DMMathLibF from the Dialog Machine V2.2) on the performance of the
PowerPC 8100/80 which used the software emulation PowerFPU V1.01 (cf. tab. 3.15).
Table 3.15 shows that for these different combinations the run-time behaviour is nearly the
same. 
Refer to tables 3.3 to 3.5 for the equivalent examinations on a Quadra 950.
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DMMathLi
b

DMMathlibF

Compile20 Compile20 Compile20
on off on

SANE on 0.6 0 1.7
SANE off 0.9 0.1 2.3

Table 3.16: Results of different options SANE on/off, Compile20 on/off, and DMMathLib or the fast ver-
sion DMMathLibF for the benchmark tests on the PowerPC 8100/80 with the software emulation
PowerFPU V1.01. These results are the mean value of the subtests in percentage difference (cf. eq. 3.2) of
the measurements. The differences are small for the different options.
Refer to tables 3.3 to 3.5 for the data of the equivalent examination on a Quadra 950.

Seventh, we compare runs of the Modula-2 version vs. the C version of the benchmark pro-
gram by using eq. 3.1. Table 3.17 and figure 3.14 show how much faster or slower the
tested compilers on the 4 machines are related to the slowest run which is referenced as
100%. Note, first, on the different platforms there were used different Modula-2 and C
compilers. Second, for the Modula-2 benchmark program the options SANE
off/Compile20/DMMathLibF are used (cf. tab. 3.4 and 3.5). Third, the C and Modula-2
benchmark programs are implemented in different ways (cf. chap. 2.2). For information
about the used compiler options refer to chapter 2.1.
Table 3.18 gives a more detailed view to the most subtests of the C benchmark run. The
result of the Modula-2 benchmark is included to get an impression of possible differences.

PowerPC 8100/80Quadra 700 SPARCstation ipx SPARCstation 10
142 154 227 414

Table 3.17: Results of the Modula-2 version of the benchmark program vs. the C version. This table
shows four (independent) pairs of mean values of all subtests given in percent (cf. eq. 3.1) to the result of
the Modula-2 benchmark run which is chosen as the reference value of 100%. For information about the
used compiler options refer to chapter 2.1.
For the Macintosh computers the Modula-2 compilation was performed by the combination SANE
off/Compile20/MathLibF (cf. tab. 3.4 and 3.5).
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Figure 3.14: Results of the Modula-2 version of the benchmark program vs. the C version.
This figure shows four pairs of (independent) mean values of all subtests given in percent (cf.
eq. 3.1) to the result of the Modula-2 benchmark run which is chosen as the reference value
of 100%. Note, on the different platforms different Modula-2 and C compilers were used. For
information about the used compiler options refer to chapter 2.1. 
For the Macintosh computers the Modula-2 compilation was performed by the combination
SANE off/Compile20/MathLibF (cf. tab. 3.4 and 3.5).

Test no.
No. of iterations No. of iterations
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Table 3.18: This table shows the results of the benchmark runs C vs. Modula-2 on the SUN
SPARCstation ipx for the most subtests. The first two columns contains the absolute measured no. of ite-
ration within 100 seconds. The third column shows whether C is faster (positive values) or slower (negative
values) as percentage difference to the C run. The values of the third column are computed by eq. 3.2 with
the Modula-2 benchmark run as the reference.
Note, the C and Modula-2 benchmark programs are partly implemented in different kinds (cf. chap. 2.2).
For information about the used compiler options refer to chapter 2.1.

Table 3.19 contains information about several differences of the run-time behaviour of
program constructions in the programming language C as e.g. of different loop constructi-
ons etc. In each group we used eq. 3.1 and refer to the slowest run as 100%. For the
comparison of one dimensional array versus multi-dimensional array access and array vs.
list access the different implementations related to the assignments of variables of these
subtests has to be taken into account. Refer to tab. 3.2 which contains the same information
for the Modula-2 benchmark test.

type conversion II loops III
N12 a
N11 b
N7 304 c

built-in function
++i

V integer vs. real
arithmetic

VI

a d
N1 e

procedure
calls

VII 1-D array vs.
2-D array

VIII array vs. pointer IX

k g g
l i n

Table 3.19: This table contains in six boxes II, III,  and V  to IX  information about several differences of
the run-time behaviour of program constructions (in the programming language C) in percent (cf. eq. 3.1)
to the slowest run in each group which is the reference of, i.e. 100%. These data are extracted from
tab. 3.18.
We refer to tab. 3.2 which contains the same type of data for the Modula-2 benchmark test.

3.2 The Benchmark Tests by the Application Speedometer

Since we do not know how the benchmark tests in Speedometer V4.02 are implemented, the
results obtained by these tests can not be taken too seriously. For example, we do not know
in which programming language Speedometer V4.02 is written, neither do we know by
which compiler and therefore by which compiler options the source code was compiled and
linked. Additionally, it is also unknown how the algorithms in Speedometer are im-
plemented. All these points can have a crucial influence of the performance of an application
(Löffler, 1995).

The results produced by Speedometer V4.02 can be helpful in order to complete the over-
view of the performance of the tested Macintosh computers. Although this additional in-
formation generated by Speedometer has to be used cautiously, it can give hints and relative
information, e.g. which machines show a better performance than in the test by our
benchmark program.
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The benchmark test by Speedometer V4.02 from Scott Berlfield are summarized in tab-
les 3.20 and 3.21. Note, the reference machine for Speedometer is the Quadra 650 which
performance is assumed to be 1.0.

Benchmark Mix IIfx Quadra
700

Quadra
950

PowerPC
8100/80
68K code

PowerPC
8100/80
PowerPC code

KWhetstones 0.501 3.965 5.220 5.797 135.042
Dhrystones 0.374 1.056 1.429 0.542 4.330
Towers 0.439 0.996 1.345 0.639 5.383
Quick Sort 0.542 0.972 1.318 0.562 6.584
Bubble Sort 0.491 0.982 1.327 0.384 4.115
Queens 0.471 0.961 1.299 0.566 4.329
Puzzle 0.390 0.990 1.347 0.613 5.734
Permutations 0.380 0.961 1.298 0.662 5.901
Int. Matrix 0.408 0.966 1.319 0.757 6.534
Sieve 0.614 0.936 1.238 0.469 4.456
Average 0.461 1.278 1.714 1.099 18.241

Table 3.20: The benchmark tests "Benchmark Mix" examined with the application Speedometer V4.02.
The results are given in relation to the Quadra 650 which performance is assumed as 1.0. For the PowerPC,
the application Speedometer V4.02 can test both, the behaviour of the PowerPC for 68K code and for native
code.

FPU BenchmarksIIfx Quadra 700 Quadra 950PowerPC
8100/80
PowerPC code

KWhetstones 0.371 0.760 1.027 7.695
Matrix Mult. 0.218 0.722 0.971 8.347
Fast Fourier 0.187 0.714 0.973 7.205
Average 0.259 0.732 0.990 7.749

Table 3.21: The benchmark tests "FPU Benchmarks" examined with the application Speedometer V4.02.
The results are given in relation to the Quadra 650 which performance is assumed as 1.0. For the PowerPC,
the application Speedometer V4.02 can only test the behaviour of the PowerPC for native code.

4. Summarize

We remind that the used Modula-2 compiler MacMETH V3.2.2 (Wirth et al., 1992) is not
able to generate native code for the RISC processors used by the PowerPC family. Hence,
all results produced on the tested PowerPC 8100/80 do neither reflect the true abilities of
this machine nor of the PowerPC computer family in general.

In the following we briefly summarize the new benchmark results without any interpreta-
tion. First we extract answers for the different test conditions of chap. 2.3. For the de-
scription of the used machines, compilers, and compiler options refer to chap. 2.1.
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For mathematical operations the results are:

• Not using SANE for Macintosh computers increases the mean speed by approxi-
mately 40% (cf. tab. 3.4 and 3.3). More precisely, the range of the increase for
mathematical operations lies between 1% to 180%, dependent on the particular
mathematical operation (cf. tab. 3.4, and 3.5).

• Using Compile20 increases for Macintosh computers the mean speed by approxi-
mately 60% (cf. tab. 3.4 and 3.3). More precisely, the range of the increase for
mathematical operations lies between 12% to 1700%, dependent on the particular
mathematical operation (cf. tab. 3.4, and 3.5).

• Using the optimised library DMMathLibF combined with Compile20 increases
the mean speed by about 500% (cf. tab. 3.4). More precisely, the range of the in-
crease for mathematical operations lies between 0% to 4000%, dependent on the
particular mathematical operation (cf. tab. 3.4, and 3.5).

For details refer to tables 3.3, 3.4, and 3.5.

For the influence of a network and of extensions (cf. chap. 2.3) to a Macintosh the results
are:

• Using no extensions for Macintosh computers yields a mean increase in speed of
approximately 400%. Thereby, the gain in the run-time performance is contributed
mainly from the mathematical subtests (cf. tab. 3.6 and fig. 3.1).

• Not to be connected to a network yields for Macintosh computers a mean increase
in speed of approximately 30%. Thereby, the gain in the run-time performance is
contributed mainly from the mathematical subtests (cf. tab. 3.6 and fig. 3.2).

• Contrary, the benchmark for using no extensions and being unconnected to a
network didn't bring any measurable effect for Macintosh computers (cf. tab. 3.6
and fig. 3.3).

For details refer to table 3.6 and fig 3.1, 3.2, and 3.3. Note, that these results are inter-
pretations of the measurements based on the equations given in chap. 2.5.

For running non-native applications on a PowerPC 8100/80 with the software emulations
SoftwareFPU V3.02 and V3.03 and PowerPFU V1.01, the results are:

• For the PowerPC 8100/80, the FPU emulation SoftwareFPU V3.02 and V3.03
(share-ware) allows to run applications which need a FPU but yields no advantage
in speed (cf. tab. 3.7 and fig. 3.4).

• The FPU emulation PowerFPU V1.01 yields additionally a mean increase in
speed of about 96%. That means PowerFPU V1.01 doubles the speed of a
PowerPC 8100/80 for non-native applications which needs a FPU (cf. tab. 3.7 and
fig. 3.4).
Thereby, the gain in the run-time performance is caused mainly by the mathemati-
cal subtests (cf. fig. 3.4).

• On the PowerPC 8100/80 with the software emulation PowerFPU V1.01, the
mathematical options SANE on/off, Compile20 on/off, and using DMMathLib or
the fast version DMMathLibF yield mainly the same run-time behaviour.
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• In this special configuration, i.e. running non-native code and using the software
emulation PowerFPU V1.01, the PowerPC 8100/80 has an average performance
such as the tested Quadra 700.

• On a PowerPC 8100/80 with the software emulation PowerFPU V1.01, the opti-
ons SANE on/off, using Compile/Compile20 of MacMETH and the library
DMMathLib/DMMathLibF from the Dialog Machine V2.2 do not differ much
(cf. tab. 3.15).

For details refer to tables 3.7, 3.8, 3.16, and figure 3.4.

Again we remember, these results are interpretations of the measurements based on the
equations given in chap. 2.5. 
The benchmark test by the application Speedometer V4.02 (cf. chap. 3.2, tab. 3.20, and
3.21) show the big difference of running applications which are generated for the Motorola
68K CISC processors vs. running applications in native code on the PowerPC 8100/80.
Also new benchmark examinations (cf. (Meyer et al., 1996)) show that the performance of
the PowerPC machines for integer and floating point operations are in the same range as
Pentium workstations. 

The comparison of the tested different machines yields:

• The speed of Macintosh computers (from IIfx over Quadra 700 to Quadra 950) in-
creases more or less linearly with all tested machines (cf. tab. 3.9, 3.10, and
fig. 3.5).

• The SPARCstation 10 is double as fast as the SPARCstation ipx (cf. tab. 3.10 and
fig. 3.5) which speed lies in the range of the SPARCserver MP630.

• The tested IBM workstations can compete with the tested SUN workstations (cf.
tab. 3.9, 3.10, and fig. 3.5). Note, these tested workstations are not the latest ones.
Therefore, we can not make statements about e.g. Intel Pentium computers and
SUN UltraSparc machines.

• The SPARCserver MP630 with two processors is about a factor 1.2 faster than the
SPARCstation ipx (cf. tab. 3.10 and fig. 3.5).

• The IBM workstations with Pentium processor is about a factor 2 faster than that
one with the 80486/80487 chip (cf. tab. 3.10 and fig. 3.5).

For details refer to tables 3.9, 3.10, and figure 3.5.

On the Macintosh computers, the comparison of language elements, compiler options etc. of
the Modula-2 compiler MacMETH V 3.2.2 and the C compiler MPW C V3.3 yields:

• Equivalent language elements, such as several loop constructions, can have diffe-
rent run-time behaviour.
The various loop constructions in Modula-2 (MacMETH) differ in speed within a
range of 22% to 58%. The C benchmark tests (MWP C) yield for different loop
construction nearly the same run time behaviour (cf. tab. 3.2 and 3.19).

• Built-in functions, such as Inc() and Dec() in Modula-2, can be faster than the
normal constructions.
The built-in functions Inc() and Dec() in Modula-2 (MacMETH) are about 30%
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faster than the normal constructions i:=i+1  and i:=i-1 . In the programming lan-
guage C (MPW C) no difference between the constructions i++  and i-- vs. i=i+1
and i=i-1 , respectively, can be recognized (cf. tab. 3.2 and 3.19).

• By increasing the parameter list, calls of subprocedures need significantly more
run-time. 
In Modula-2 (MacMETH) the difference between calling a subprocedure with and
without a parameter list of four integers (call by value) is about 24%. In the pro-
gramming language C (MPW C) the difference was measured as 169%.

• An algorithm can be significantly slowed down by checking ranges of arrays,
pointers etc. 
For the compiler MacMETH checking ranges etc. decrease the speed by about
48% to 72% depending on the operation.

• The access to one-dimensional vs. two-dimensional arrays of same total size can
be different.
In Modula-2 (MacMETH) the access to one-dimensional arrays was measured as
about 37% faster. In the programming language C (MPW C) this difference was
8%.

• The access to one-dimensional arrays vs. lists via pointer can be significantly dif-
ferent. For Modula-2 (MacMETH) the access to arrays was measured as about
1108% faster. For C (MPW C) this difference was about 1289%.

• Reading integer disk streams was in Modula-2 (MacMETH) about 52% faster
than reading real disk streams.

For details refer to tables 3.2, 3.18, and 3.19 and figure 3.14, but also table 3.1.

These comparisons between the used compilers of Modula-2 and C and of equivalent lan-
guage constructions of Modula-2 and C, such as e.g. different loops, can not be taken as
very strong results. Also comparisions between the run-time behaviour of e.g. the loop
constructions of Modula-2 and C have to be made carefully. 
For instance, we do not know the implementation of the compilers and hence the influence
of the compiler options to applications can not exactely be taken into consideration (cf.
chap. 2.1). Therefore, we did not test standardized compilers but ones in their typical user
mode. 
This comparison of the different compilers or programming languages yields:

• In average over all subtests (cf. tab. 2.5 and 2.6), the tested C compilers seems to
generate code which runs by a factor 1.5 to 4 faster than the comparable code of
the tested Modula-2 compilers (cf. tab. 3.18 and fig. 3.14).

5. Discussion

We remind that the used Modula-2 compiler MacMETH V3.2.2 (Wirth et al., 1992) is not
able to generate native code for the RISC processors used by the PowerPC family. Hence,
all results produced on the tested PowerPC 8100/80 do not reflect neither the true abilities
of this machine nor of the PowerPC family in general. 
This fact is for example demonstrated by the benchmark test with Speedometer V4.02 (cf.
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chap. 3.2, tab. 3.20 and 3.21) and also by comparisons between the PowerPC and Pentium
machines (Meyer et al., 1996).

Generally, it has to be in mind that the results of benchmark tests depend

• strongly on the used configurations, such as e.g. the used compilers and compi-
ler options, the produced binaries in native code or not, the definition and im-
plementation of the benchmark tests etc.

• on the configuration of the machine, such as the connection to a network etc.

• and on the decade at which the machines were tested, since, e.g. a formerly fast
machine can at a later time be one of the slowest tested computers.

Therefore, interpretations of benchmark results has to be made safely and relatively with
respect to these facts.
The worth of benchmarks do not lie in strong and absolute results, but in tips and hints for
special purposes, in an overview which can be extracted from the produced data, in a
summary of data which are collected over years, and in getting an idea of what an user can
expect from a machine in every day use.

The benchmark examinations presented in this paper did not yield big surprises, except the
results for the PowerPC 8100/80 which therefore needs a special analyse and except the re-
sults influence of a connection to a network or using extensions (cf. chap. 2.3) by a
Macintosh computer.

For the overview in tables 3.9 and 3.10 and figure 3.5 of the average over the measured
performance of the tested machines it has to be in mind that the benchmark programs were
compiled and linked with different compilers (cf. chap. 2.1).
Nevertheless, by this overview of the tested platforms we obtain an impression of the per-
formances with which one probably has to deal. Relative to the group of machine they be-
longs to, the SUN workstations, IBM, and Macintosh computers show an expected per-
formance. So, for example, it was expected that a Pentium, SPARCstation 10, and Quadra
950 are faster than the DX486, SPARCstation ipx, and Macintosh IIfx, respectively.
Also, a comparison of the groups SUN, IBM, and Macintosh computers does not yield a
surprise. The Pentium machine can compete with the tested SUN workstations, but these are
not the latest available SUN workstation such as e.g. the UltraSparc. The Quadra 950 can
compete with the DX486 machine as well with the SUNstation ipx and SPARCserver
MP630. 
For the PowerPC 8100/80 the results show that this is clearly a fast machine (cf. tab. 3.20
and 3.21). But by executing 68K binaries, this good performance of the PowerPC 8100/80
is not of use, since these binaries are not native code for this RISC machine.
With the software emulation PowerFPU V1.01 the speed of mathematical operations can
significantly be increased (cf. tab. 3.7 and fig. 3.4). Therefore, the measured performance of
the PowerPC 8100/80 in this special configuration (executing 68K binaries and using
PowerFPU V1.01) lies in the range of the other tested Macintosh computers.

Hence, for the PowerPC has to be taken into consideration that

• the Modula-2 compiler MacMETH V 3.2.2 can not generate binaries for RISC
architecture.

• therefore an software emulation has to be used in order to reduce this lack.
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Contrary to other MacIntosh machines, the choice of various options (SANE on/off,
Compile/Compile20, DMMathLib/DMMathLibF) did not have an influence on the perfor-
mance of a PowerPC 8100/80 with the software emulation PowerFPU V1.01. This is no
suprise, since a software emulation can not replace a mathematical co-processor.
Nevertheless, in average, small differences were recognizable.

As the test with Speedometer V4.02 shows (cf. tab. 3.20 and 3.21), for taking advantage of
the RISC processor architecture of the PowerPC 8100/80 native code application are neces-
sary. By tables 3.20 and 3.21 it is expectable that for native code applications the overall
performance of the PowerPC 8100/80 can at least compete with the SUN and IBM work-
stations.

Table 3.6 and figure 3.1 show that extensions (cf. chap. 2.3) used by a Macintosh computer
influence the performance. Surprisingly, this influence seems to be strong only for the
mathematical subtests (cf. tab. 2.5 and 2.6), but not for e.g. matrix access (subtest i).
A similar behaviour, but not such clearly, can be recognized if the tested machine is not
connected to the network (tab. 3.6 and fig. 3.2). 
Obviously, network or extensions use large parts of the processors capacity, as expected.

Astonishing was the result of testing the same Macintosh machine which was unconnected
to a network and did not use extensions. No difference between using and not using this
configuration can be recognized (tab. 3.6 and fig. 3.3). We repeated this experiment several
times with the same result. 
We have no explanation for this measurement beside the one, that the assumptions of chap.
2.5 for sensitive tests are not sufficient for some tests.

The benchmark results for the Macintosh computers using MacMETH (Wirth et al., 1992)
with the three possibilities (1) SANE on/off, (2) using Compile or Compile20, and (3) using
DMMathLib or DMMathLibF (cf. chap. 2.1, 2.3, and 3.1) can easily be interpreted.

The SANE software library performs a 64 bit arithmetic, whereas without this library only
the available 32 bit arithmetic can be used. Since the 64 bit arithmetic is available by the
SANE library, the 64 bit arithmetic is slower than the 32 bit arithmetic but has the better ac-
curacy and vice versa. For details of this subject refer to (Apple Computer, 1986; Apple
Computer, 1993a; Löffler, 1995).
In average, not using the SANE library increase the run-time of binaries by about 40%. If a
mathematical coprocessor is available in the Macintosh computer, then using the optimized
MacMETH compiler Compile20 instead of Compile additionally increase the run-time of
applications by an additional 60%. Therefore, not using SANE together with compiling by
Compile20, binaries run about 100% faster on Macintosh computers with a mathematical
coprocessor than not using these optimizations. By this simple optimization, binaries which
are produced by the compiler MacMETH can benefit by a factor of about two. 
Additionally, using the optimized mathematical library DMMathLibF instead of
DMMathLib (Fischlin et al., 1994) increase the run-time of applications by about 400%. 
Therefore, using the three optimzations on a Macintosh machine on which a mathematical
coprocessor is available, binaries which are generated with the MacMETH can benefit by a
factor of about five.
These results show the importance of using optimized software libraries and of knowing the
effects of the used compiler options in order to write and generate fast applications (Löffler,
1995).

Programmers should always have in mind that different elements of programming langua-
ges which are used in order to solve a special problem can strongly influence the perfor-
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mance of an application. This is demonstrated by the different performances of constructi-
ons of programming languages, such as e.g. several loop constructions or reading integer or
real disk streams (tab. 3.2 and 3.19). For this subject refer to e.g. (Löffler, 1995).

The comparison between Modula-2 and C can not give strong results. The main perspective
was to get answers about the overall performance of different programming languages and
impressions of the differences which can occur if people use the compiler in their typical
user mode (cf. tab. 3.18 and fig. 3.14). For the used compiler options refer to chap. 2.1.
Nevertheless, first, these results give an impression how different equivalent constructions
of a programming language such as loops can be and that such differences have not to be in
the same way different for several languages or compilers. Second, since the effects of
compiler options are not always described in details, differences in the run-time behaviour
of e.g. loop constructions in different programming languages can unexpectedly be the re-
sult of such compiler options. Third, these results show how essential it can be to carefully
choose the constructions of a programming language for the applications which people want
to develop (Löffler, 1995).
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Appendix

A. The early benchmark tests

In the last decade, traditional benchmark tests (Gilbreath, 1981; Wirth, 1981; Gilbreath &
Gilbreath, 1983; Hinnant, 1984; Linton, 1986) described in chap. 2 as well as benchmarks
such as Sieve, Ereal, Freal, Queens and MacQueens were executed. We give a short de-
scription of these five test programs in the following.

(Sieve) The program Sieve is a procedure for finding prime numbers based on the
Eratosthenes sieve. In the classic sieve procedure, the natural numbers are arranged in order
and then crossed out every nth number after reaching the number n. The numbers that are
not crossed out, which pass through the sieve, are prime numbers.
One remarkable feature of the program is that it avoids multiplication and divisions because
these operations are usually slow (Gilbreath, 1981; Gilbreath & Gilbreath, 1983)
Sieve does many looping and array subscription and is thus biased strongly toward ma-
chine-code compilers. Sieve tests compiler efficiency and processor throughput. It's an ex-
cellent test for looping, testing and incrementing.
(Ereal) The program Ereal loops five thousand times through a simple multiplication and
division calculation of real numbers. This benchmark test is the same as subtest e (cf.
tab. 2.5) of the traditional benchmark test set.
(Freal) The program Freal calculates the standard functions sin, exp, ln and sqrt using real
numbers, five hundred times. This benchmark test is the same as subtest f (cf. tab. 2.5) of
the traditional benchmark test set.
(Queens) The program Queens shall find all possible placement of eight queens on a chess
board in such a fashion that none is checking any other piece, i.e. each row, column, and
diagonal must contain at most one piece. The program outputs a graphical presentation of
the queens position on the chess board as the different solutions are being calculated.
Queens tests the capability for line drawing of a computer.
(MacQueens) The program MacQueens is similar to the programQueens but displays both
the individual solutions, which are already found, and the solution which is currently being
calculated. That is, this program requires somewhat more drawing capacity than the Queens.

We restrict the view for these early benchmark to a summarization of the measured data.
First we give by the tables A.1, A.2, A3, A4, A5, and A6 an overview of the benchmark test
described in chap. 2 with a Modula-2 program. The data are given related to the result
measured with the machine Lilith by the equation

Dsubtest = Smachine / SLilith . (a.1)
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Test No. Litlith CompuPro (A) CompuPro (A) CompuPro (B) CompuPro (C)

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.1: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). For the machine Lilith the
absolute values in seconds are given. These benchmark tests are done in Modula-2. The symbol (*$T-*)
marks tests which has made no index test (arrays etc.)

Test No. CompuPro (D) PdP-11/23 PdP-11/23 PdP-11/40 Alto 2
MP/M 8-16 not optimized optimized floppy-disk

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.2: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.
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Test No. Macintosh Macintosh1 Macintosh2 Macintosh3 Mac Plus2
floppy-disk floppy-disk floppy-disk floppy-disk floppy-disk

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.3: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.
1 5-pass compiler Logitech; 2 1-pass compiler MacMETH V1.0; 3 1-pass compiler MacMETH V2.0;

Test No. Mac Plus1 Mac Plus2 Mac Plus3 Mac II1 Mac II4
floppy-disk floppy-disk only (*-T*)

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.4: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2. The symbol (*$T-*) marks tests which has made no index test (arrays etc.)
1 1-pass compiler MacMETH V2.0 with SANE MathLib; 2 1-pass compiler MacMETH V2.3;
3 1-pass compiler MacMETH V2.2; 4 1-pass compiler MacMETH V2.2 with DMMathLib V0.4;
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Test No. KayPro 286 IBM PC AT IBM PC AT VAX 11-780 VAX 8600
(no 80287) (no 80287) (with 80287)

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.5: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.

Test No. VAX WS II VAX 310 Ceres SUN SUN
3/50 3/160

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.6: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the test on Lilith which is referenced as 1 (cf. eq. a.1). These benchmark tests are
done in Modula-2.

Second, we give by the tables A.7 and A.8 an overview of the benchmark test described in
chap. 2 with a Pascal program.
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Test No. CompuPro(B) CompuPro(C) CompuPro(D
)

Macintosh

only (*$T-*) only (*$T-*) (MP/M 8-16) (floppy-disk)
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.7: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the Modula-2 benchmark test on Lilith which is referenced as 1 (cf. eq. a.1). These
benchmark tests are done in Pascal. The symbol (*$T-*) marks tests which has made no index test (arrays
etc.)

Test No. VAX 11-780 VAX 8600 VAX WS II VAX 310
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

Table A.8: This table shows the relative number of iterations which could be executed for each subtest in
100 seconds related to the Modula-2 benchmark tests on Lilith which is referenced as 1 (cf. eq. a.1). These
benchmark test are done in Pascal.

Third, the tables A.9a, A.9b and, A.10 contain the data coming from the programs Sieve,
Ereal, Freal and Queen and MacQueen.
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Pascal Modula-2
Sieve Ereal Freal Sieve Ereal Freal

Lilith 4.24
Ceres
(10 MHz)

4.98 2.26 3.07

CompurPro
(Z80 8 MHz)

13.3

CompurPro (A) 8.62
CompurPro (A)
only (*$T-*)

9.35

CompurPro (B) 4.04
CompurPro (C) 2.75 3.6
CompurPro (D)
(8086 8 MHz)

6.9 72.2 107.3

CompurPro (D)
(8086/87 8 MHz)

6.93 72 107 5.32 5.6 9.7

MacIntosh 512
w/Floppy disk1

7.4 21 44 7.4

MacIntosh 512
w/Floppy disk2

7.2 22.4 47.6

Macintosh 512
w/Floppy disk3

6.4 22 47

Macintosh 512
w/Floppy disk4

6.4 257 324

Macintosh Plus
w/Floppy disk3

6.5 22 47

Macintosh Plus
w/Floppy disk4

6 221 360

Macintosh Plus
w/Floppy disk5

6.4 23 75

Mac II6 1.29 4.28 9.32
Mac II7 1.29 5.3 16.17
KayPro II
(Z80 3 Mhz)

37.2

IBM PC
(8088 5 MHz)

5.4 67 101

IBM AT
(without 80287)

5.4 67 101

Cray - FORTRAN 0.111

Table A.9a: This table shows the benchmark results (measured time in seconds) for the tests with Sieve,
Ereal, and Freal. The needed time is measured in seconds. The sign "†" marks tests which were to fast to be
measured by stop-watch means. The sign "‡" means: virtual values - calculated time used. The symbol
(*$T-*) marks tests which has made no index test (arrays etc.)
1 5-pass compiler; 2 1-pass compiler; 3 1-pass compiler MacMETH V1.0; 4 1-pass compiler MacMETH V2.0;
5 1-pass compiler MacMETH V2.0 with SANE MathLib;
 6 1-pass compiler MacMETH V2.2 with MathLib V0.4;
7 1-pass compiler MacMETH V2.2 with MathLib V0.5;
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Pascal Modula-2
Sieve Ereal Freal Sieve Ereal Freal

VAX 11-750 4.6
VAX 11-780 2.23  †  † 4.64 1.63 2
VAX 8600 1.2  †  † 0.83 0.91
VAX WS II 1.96 0.15 0.03 2.82 1.69 2.3
VAX 310 2.23  †  † 2.6 2 1.63
SUN 3/50 1.45 6.2 11.5
SUN3/160 1.26 4.79 9.23
Apollo DN320
(68010 12MHz)

2.3

Apollo DN330
(68020 12MHz)

1.2 1200 1320

AT&T B2/400 1.2 1200 1320
Olivetti M24 6.9 72.2 107.3
CDC 6400 ‡ 5.2 ‡ 1.3 ‡ 5.9
Cray - FORTRAN 0.111

Table A.9b: This table shows the benchmark results (measured time in seconds) for the tests with Sieve,
Ereal, and Freal. The needed time is measured in seconds. The sign "†" marks tests which were to fast to be
measured by stop-watch means. The sign "‡" means: virtual values - calculated time used. The symbol
(*$T-*) marks tests which has made no index test (arrays etc.)
1 5-pass compiler; 2 1-pass compiler; 3 1-pass compiler MacMETH V1.0; 4 1-pass compiler MacMETH V2.0;
5 1-pass compiler MacMETH V2.0 with SANE MathLib;
 6 1-pass compiler MacMETH V2.2 with MathLib V0.4;
7 1-pass compiler MacMETH V2.2 with MathLib V0.5;

Queen MacQueen
CompruPro 185
MacIntosh 65 1264
Smaky 100
MacIntosh+ 1140

Table A.10: This table shows the benchmark results for the tests with Queen and MacQueen. The needed
time is measured in seconds.

B. Benchmark programs

For the benchmark tests described in this publication, several versions of the benchmark
program were written. For Modula-2 exist two versions, one for Macintosh computers un-
der the simulation environment RAMSES, the other for batch runs on SUN workstations
under RASS. There exist three C versions, one for SUN workstations (GNU compiler gcc
and g++ V 2.4 (EPC, 1991)), and two for Macintosh computers - written for MPW C. A
Pascal version for the IBM workstations was also realised.

We do not include the source code of the benchmark programs because these sources are
easily available via different publications (Gilbreath, 1981; Wirth, 1981; Gilbreath &
Gilbreath, 1983; Hinnant, 1984; Linton, 1986). Our benchmark programs as well as the
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simulation environment RAMSES V2.2 and the Modula-2 compiler MacMETH V3.2.2
are/is down-loadable via ftp or WWW from the following addresses:

ftp://ftp.ito.umnw.ethz.ch/pub5

http://www.ito.umnw.ethz.ch

The benchmark programs are down-loadable by anonymous ftp from the directory
/pub/benchmark and RAMSES, MacMETH from the directory /pub/pc/RAMSES and
/pub/mac/RAMSES, respectively.
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