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Introduction

In this paper aspects for writing fast programs will be discussed and extracted into rules. Each
rule will be explained by an example mainly given in Modula-2 if the rule is independent of a
special programming language. Some specialities of specific languages will be considered but
for special properties we refer to the relevant literature.
The given rules are concepted for saving computation time which may conflict with other aspects
of writing programs e.g. producing small, modular, self-explainable code etc.
The efficiency of these rules within a program depends strongly on the code itself as well as on
the special problem which has to be solved. The programmer also has to decide about which
rules to implement based on his particular programming style. It is not our aim to interfere with
such discussions here.
The main rule of writing time optimised programs can be described as save operations
whenever possible. This rule will be described more explicitly using basic examples given in the
text.
Note that the way of saving operations is not unique. It can be done on several levels as in ob-
jects, modules, or routines and functions by local or global variables etc. and in different kinds
of implementation.

1. Computer components

In this chapter, significant components of platforms (the composition of hardware and software)
which influence the run-time behaviour of programs are briefly described.
The run time behaviour of programs depends not only on the program itself. It is also essential
to know details of the elementary hardware components, the system, and used emulation soft-
ware for a computer as follows.
The CPU is necessary for any kinds of operation, e.g. integer arithmetic. Another possibly
available unit is the FPU (numerical co-processor) which is designed for floating point operati-
ons. Today both units are often included together within one chip.
If no FPU is available, this function is realized via emulation by the CPU. This leads to

• a highly inefficient run-time behaviour of applications due to the emulation of floating
point operations by integer arithmetic;

• the possible use of so called FPU software for effective emulation of the absent nu-
merical co-processor;

Beside the distinction of CPU and FPU we have to differentiate between CISC (Complete
Instruction Set Computer) and RISC (Reduced Instruction Set Computer) processors.
Examples for CISC architecture are Intel's 80x86 CPU, 80x87 co-processor series, Pentium and
Motorola's MC68040 for Macintosh computers and for RISC architecture the PPC601 used by
Macintosh's PowerPC and the SuperSparc chips of SUN workstations.
The conception of RISC is to replace rarely used processor instructions of their predecessors by
a series of other faster processor instructions. By this strategy, the resulting efficiency of the
RISC architecture increases and is supposed to be faster than the CISC architecture. However,
CISC machines such as Intel's Pentium are real competitors even to the SuperSparc philosophy
of SUN [Löffler & Fischlin, 1995].
In order to generate the fastest possible code a compiler must be able to generate so called native
code. This means that the compiler should be able to create applications which could potentially
use all of the available instructions supported by the processor(s) of the machine what can be the
guarantor for fastest applications related to that processor(s). For example, an application
generated for Intel's 8086 chip will not run as fast on Pentium PC's.
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Producing native code is also essential for the FPU, e.g. the Modula compiler MacMETH offers
the option Compile20  [Wirth et al., 1992] for generating such code for the co-processor
MC68020.
For Apple computers [Apple Computer, 1986; Wirth et al., 1992] there is the Standard Apple
Numerical Environment (SANE). Prior to the compilation SANE can be switched on or off.
This environment provides high accuracy for arithmetical operations (64 bit arithmetic) but ap-
plications compiled without SANE are significantly faster [Löffler & Fischlin, 1995] The reason
for this is that the transformations from 32 to 64 bit representation and vice versa done by
SANE for floating point variables are implemented within every arithmetical operation.

VAR
dValue1, dValue2, dValue3, dValue4 : REAL;
...
dValue1 = dValue1 * (dValue2 - dValue3) / (dValue4 + dValue2);

In this example the steps by using SANE are transforming

• dValue4 and dValue2 to 64 bit representation, then adding them together and conver-
ting the result back to 32 bit representation;

• dValue2 and dValue3 to 64 bit representation, then subtracting them and converting the
result back to 32 bit representation;

• the results from the described 2 operations to 64 bit representation, then dividing  them
and converting the result back to 32 bit representation;

• the result of this last operation and dValue1 to 64 bit representation, then multiplying
them together and converting the result back to 32 bit representation;

All of these transformations slow down arithmetical operations significantly.
The efficiency with which data can be transferred to and from memory is an essential limiting
factor for the performance of a computer. This is of particular importance if operations are re-
peated on a large number of data elements as in linear algebra.
For efficient memory management modern computers have cache memory which is an inter-
mediate store between the CPU and the main memory designed to hold contiguous data values
(e.g. arrays) for immediate processing by the arithmetic unit (cf. chapter 6.2).
There are two kinds of multitasking, systems, the cooperative (e.g. Windows and MacOS) and
the preemptive (e.g. Unix). In a cooperative multitasking system a running application has
control of the computer and has to return this control to the system actively for other applicati-
ons to work. In preemptive multitasking systems a master process controls the machine comple-
tely and gives the active applications time slices for running.

2. Elementary results of benchmarks
Aside from the optimisation of programs described in the following chapters, we give additional
information of the run-time behaviour of applications in a short summary based on elementary
benchmark experiments [Löffler & Fischlin, 1995] . For more details refer to this publication.
The tested machines were Macintosh computers (SE/30, IIfx, Quadra700, Quadra950, PowerPC,
PowerBook170, PowerBook520, and PowerBook540c), IBM workstations (80486 and
Pentium), and SUN workstations (SPARCstation 10, SPARCserver 630 MP, and
SPARCstation ipx).
The compilers used were for Macintosh machines MacMETH V3.2.2, Symantec C/C++ V7.0.4,
and MPW C V3.3, for SUN workstations em2 V2.0.2, and gcc/g++ V2.4, and for IBM
workstations Borland Pascal V7.0. Important results in the context of this paper are
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• Not using SANE for Macintosh computers increases speed by approximately 50%.
More precisely the range of the increase for mathematical operations lies between 1%
to 180%, dependent on the particular mathematical operation.

• Using Compile20 brings increases the mean speed of Macintosh computers by ap-
proximately 60%. More precisely the range of the increase for mathematical
operations lies between -12% to 1700%, dependent on the particular mathematical
operation.

• Using the optimised library DMMathLib20 [Fischlin et al., 1988; Fischlin et al., 1994]
combined with the Compile20 option of MacMETH brings in a large mean increase in
speed of around 500%. More precisely the range of the increase for mathematical op-
erations lies between 0% to 4000%, dependent on the particular mathematical opera-
tion.

• Using no extensions for Macintosh computers brings a mean increase of approxi-
mately 400%. This increase arises mainly from the mathematical subtests.

• Being unconnected to a network increases the means speed of Macintosh computers
by approximately 30%. This increase arises mainly from the mathematical subtests.

• The benchmark for the case of using no extensions and being unconnected to a net-
work shows no measurable effect for Macintosh computers.

• For the PowerPC, the FPU emulation shareware SoftwareFPU V3.02 and V3.03 al-
lows to running of applications which need a FPU but brings no advantage in speed.
The shareware PowerFPU V1.01 increases the mean speed of applications by an ad-
ditional 100%. That means PowerFPU V1.01 doubles the speed of a PowerPC for
non-native applications which need a FPU.

• Applications for PowerPC not generated as native code cannot compete with native
code applications for SUN workstations or IBM workstations with Pentium processor.

• CISC machines (IBM workstations) can compete with RISC workstations (SUN
SPARCstation).

• Different but equivalent language elements (e.g. loop constructions etc.) of the tested
programming languages can have different run-time behaviour. Therefore it must be
borne in mind that similar constructions in a programming language can have a diffe-
rent run-time behaviour. For instance, different loop constructions in Modula differ in
their speed in a range of 20% to 50% contrary to loop constructions in C/C++.

• Built-in functions (e.g. the functions Inc and Dec in Modula) are about 30% faster
then normal constructions (e.g. i:=i+1 and i:=i-1 in Modula).

• By increasing the parameter list, calls of routines significantly slow down an applica-
tion. For example, the difference in speed of calling a routine without a parameter list
and for such a list transferring 4 integers is about 25%.

• Checking ranges of arrays, pointers etc. slow down an algorithm significantly (about
40% to 70% speed depending on the operations).

• The access to one-dimensional arrays versus matrices can be significantly faster (about
140%). Also, the access to one-dimensional arrays versus lists (via pointer) is signifi-
cantly faster (about 1210%)

• The difference of computing with real or integer variables is about 2270% for simple
operations as multiplication, division, addition and substraction.
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• The C/C++ compilers generate code which runs by a factor 1.4 to 4 faster than the
code of the Modula compilers.

• Different profiler sessions show that users normally write their applications not with
respect to run-time even if they need fast programs. An experiment with an determi-
nistic forest model easily achieved a 70% increase in speed.

The run-time behaviour of applications depends strongly on the compiler used for the program-
ming language. Thus several rules presented in the following sections are not universal, they
also depend on the quality of the compiler. For these cases refer to publications about
benchmarks.

3. Constants
One of the easiest ways to save computation time is to use constants for expressions like Π / 2
etc. and not routines like Pi() for computing such values.

Rule 3(1) Determine all values used in the implemented algorithms which can be
computed beforehand and store them as constants.

Rule 3(2) Never use routines which compute constant values (e.g. Pi ()) more then once 
in a program.

For example use the routine Pi() for declaration.

CONST
sqrtPi = Sqrt (Pi ());

Alternatively such routines can be used for the initialisation of variables which are used like con-
stants as it is described in the next chapter.
Another example is storing an array of constant values like the faculties 1!,...,5!.

const int
aiFaculty = (1,2,6,24,120);

4. Invariant values
Further way to save on the number of operations is given by the invariance of values for the
complete program, objects, modules, blocks, loops etc. Such values can be computed at the
beginning of the program, block or loop etc. evaluation. This is possible whenever values de-
pend only on data which are not changed by the specific algorithm in use.
The equation tsave = ncalls(tcompute - tget) - tini describes the advantage of using initialised val-
ues and it has 2 statements.

• Run-time can only be saved (tsave > 0) if the time tini for the initialisation of the value
is smaller than the difference tcompute - tget of the frequencies tcompute which we
would have to investigate if we use no initialisation structures and tget needed to get the
value from the variable.

• If run-time is saved by the program structure than the saved time tsave increases line-
arly with how often the values is used, ncalls.

Note that ncalls * tcompute is not necessarily identical to tini.
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4.1 Quasi-constants, Initialization

By quasi-constants we mean variables which can be determined by an algorithm in the initiali-
sation phase of the program run if these values are independent of the effects of the simulation.
Note, that such variables can be dependent on initial values of a run.
Another possibility is the replacement of constant declarations which are, by definition, totally
independent of effects as well as initial values of the program run by quasi-constants.
This may be useful if the algorithm for determining the constants is too complicated to be solved
by hand.

Rule 4(1) Determine all possible values in the initialisation phase of the program run 
(dependent on given initial conditions).

As an example the array adInitialArray depends on the variable rStartValue and the contents
of the former will not change during the program run.

IMPLEMENTATION MODULE InitialArray;
CONST

dInitialArrayDimC = 50;
VAR

adInitialArray : ARRAY[1..dInitialArrayDimC] OF REAL;

PROCEDURE GetInitialArray (iDim: INTEGER; rStartValue: REAL);
VAR

I : INTEGER;
BEGIN

FOR I:=1 TO iDim DO
BEGIN

adInitialArray[I] := rStartValue / FLOAT (I);
END;

END GetInitialArray;

BEGIN
GetInitialArray (100, 12.456);

END InitialArray.

4.2 Variables inside Blocks and Loops

Similar to section 4.1 it is often possible to define variables which are constant within a block, or
loop etc.

Rule 4(2) For blocks and loops determine all possible values which are independent of
the algorithm outside the block/loop.

PROCEDURE Loop(iArrayDim: INTEGER; VAR adTheArray: ArrayType; dIniValue: REAL);
VAR

I, iSaveIndex, iEndIndex : INTEGER;
dExpIni : REAL;

BEGIN
dExpIni := Exp (dIniValue);
iEndIndex := iArrayDim - 1;
FOR I:=0 TO iEndIndex DO

BEGIN
iSaveIndex := I + 1;
adTheArray[I] :=

FLOAT (iSaveIndex) + dExpIni - Sqrt (adTheArray[iSaveIndex]);
END;

...
END Loop;

This example includes three points. First, there will be saved run-time by not computing
Exp (dIniValue) within the loop, second, by computing iSaveIndex one saves an additional
operation per loop, and third, by introducing iEndIndex another computation of iArrayDim-1
after every iteration can be saved for testing whether or not the loop has ended. This leads to the
rule

Rule 4(3) Within loops avoid all computations of indices.
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Remark Sophisticated compilers provide optimisation options for doing rule 4(3) 
automatically, especially saving the index computation iArrayDim-1.

4.3 Splitting complex algorithms

If we can split a complex algorithm into pieces for using them for different operations within the
algorithm then it is possible to evaluate this algorithm faster.

Rule 4.3 Generally split algorithms into pieces which can be used several times (to save 
evaluations).

...
Diam := Diameter (trueHeight, minHBirth, spec, treeSpec);
LnDiam100 := Ln (Diam * 100);
LnDiam100a2 := LnDiam100 * a2;
a1ExpLnDiam100a2 := a1 * Exp (LnDiam100a2);
leaveAreaInH[height] := c2 * a1ExpLnDiam100a2;
folW := c1 * a1ExpLnDiam100a2;
stemW := 0.12 *Exp (LnDiam100 * 2.4);
biomassInH[height] := (folW + stemW) * 10.0 / patchSize;
...

In this example a part of a complex algorithm is split such that the pieces LnDiam100 and
a1LnDiam100a2 can be used twice.
In the case of complicated algorithms writing efficient programs by splitting the algorithm can
also make the code more understandable because it is easier to understand simple pieces rather
then the whole algorithm.
Some compilers avoid programming code which is grouped together, e.g.

...
dValue := (dValue1 * dValue2) * dValue3;
dValue := dValue4 * (dValue1 * dValue2);
...

In such cases the compiler will not evaluate dValue1*dValue2 twice in the final executable bi-
nary.

4.4 Array Copying

Array copying can be completely avoidable which will be demonstrated by the following exam-
ple.

VAR
dArray : ARRAY[1..10000][1..17][1..2] OF REAL;
dGKS : ARRAY[1..17] OF REAL;
dYP, dY : ARRAY[1..10000] OF REAL;
iI, iJ, iOld, iNew : INTEGER;
...

iIndexOld := 1;
iIndexNew := 2;

...
(******** begin of iterated block ********)

...
FOR iI=1 TO 10000 DO

dArray[iI,1,iNew] = Y[I];
FOR iJ=1 TO 16 DO

YP[iI] = YP[iI] + (Y[iI] -
dArray[iI,iJ,iOld]) * GKS[iJ];

dArray[iI,iJ+1,iNew] = YP[iI];
END

END
...

iOld := 3 - iNew;
iNew := 3 - iOld;

...
(******** end of iterated block ********)

...
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This example shows a block in which the computed values from the last iteration are necessary
for generating the new values. Instead of using 2 arrays and making copies of the resulting array
in each iteration, we simply combine both arrays together and change the values of those indices
to access the old values and store the new ones (needed in the next iteration) into the right
places.

Rule 4(4) Avoid array copying by a simple technique as shown.

For further essential points related to arrays see section 6.
Some programming languages such as Modula and Pascal provide the possibility to copy whole
arrays of the same type simply by using the command array1 = array2 .
This is possible by special fast copy routines in the run-time library of these languages.

Rule 4(5) Use the fast variants of array copying (instead of element copying) if the
programming language provides it.

Note that this can be widely used for array initialisations. For example, if an array often has to
be reset to defined numbers, an array can be created in the initialisation phase of the run (storing
these numbers) and then used for fast copying.

Remark Fast copying routines can also be given like normal routines. Borland Pascal ad
ditionally provides Move which allows fast copying of every type of variable 
[Borland International, 1992].

5. Routines and Functions

5.1 Pre-processors and Inline functions

Some compilers provide the use of inline functions by

• using pre-compiler/pre-processor (e.g. C/C++);

• marking routines as inline (e.g. C++);

• having compiler options for expanding the program code of used subroutines and
functions (e.g. FORTRAN);1

FORTRAN compilers often have a pre-processor that expands each routine call in the program
by it's source code if possible. C/C++ allows the definition of different kinds of macros (e.g.
numbers, C code). For instance a function AbsDiff is definable as a macro through

#define AbsDiff(a,b) ((a)>(b) ? (a)-(b) : (b)-(a))
...

double
X, Y, dAbsOfXY;
...

dAbsOfXY = AbsDiff (X,Y);

The pre-compiler of C/C++ replaces the identifier AbsDiff of that macro in the C/C++ code by its
definition. At all places AbsDiff is used there is no function call and therefore the cost of the eva-
luation a function (which could also be used instead of a macro) is saved by this replacement
[Kernighan & Ritchie, 1990; Kölsch, 1994].

1 cf. chapter 9;
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Rule 5(1) If a pre-processor is available define short functions and subroutines always as
pre-compiler macros.

Note that the use of the pre-compiler of C/C++ is not without dangers [Kernighan & Ritchie,
1990; Kölsch, 1994].

Remark That there exist compilers on workstations which are able to expand a program 
by optimised standard libraries like the BLAS (cf. chapter 7.1). This means that 
nested loops in your program will be replaced by a call of a subroutine of that 
libraries if possible [Willé, 1992; Willé, 1993].

The declaration of routines in C++ as being inline means that the compiler tests whether or not
it is an advantage for the run-time behaviour of the program to insert the object code at places
where the routine has to be called relative to the disadvantage of an increased executable binary.

Rule 5(2) If possible declare routines as inline code.

This can easily be done for all routines in a program. Hence the resulting application can be
large, in contrast to the aim of producing small code.

Remark FORTRAN provides statement functions as another possibility to avoid function
calls.

Such possibilities as pre-compilers, declaration as in-line etc. save function calls in the applica-
tion which will especially speed up codes which are highly procedural or modular written.

5.2 Parameter lists

The cost of calling subroutines increases by transferring large variables such as big arrays or
records throughout the parameter list.
The often unseen problem of transferring large variables is that not referencing such variables
by a pointer means that with the call of the routine the parameter has to be copied (call-by-value)
which requires more time with increasingly large parameters. Obviously, it is much faster to
transfer a reference of a variable, which is an integer, than the variable itself.

Rule 5(3) Always transfer large variables to and from subroutines referenced by a pointer
(call-by-reference).

Remark C/C++ provides the user with a safety feature. In both programming languages a
constant reference to a variable can be made, e.g. as function (const 
*aArray). In C++ the reference operator "&" function (const &aArray) 
can alternatively be used. The effect is that the transferred variable cannot be 
manipulated by the routine function although it is a call-by-reference. So such 
routine calls are both, fast and save.

Object oriented programming languages such as C++ can have a problem of transferring (large)
variables to routines of one more dimension. With C++ it is usual to call subroutines such as
constructors and destructor implicitly [Stroustrup, 1992].The next example where cString itself
is a class demonstrates this property.

class cXYZ {
cString sName, sFirstName;
int iOld;
double dLink;

};
...

cXYZ a;
...

void function1(double a) { ... };
void function2(double *a) { ... };
void function3(const double &a) { ... };

...
function1 (a); // this call makes a copy of the instance a
function2 (a); // this call makes no copy and allows the manipulation of the

// instance a
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function3 (a); // this call makes no copy and does not allow the manipulation of the
// instance a

With each copying of the variable a of type class cXYZ, e.g. by the call of function1, this in-
stance will be initialised by constructors. In our example no copy-constructor defined, and the
default copy-constructor of C++ will therefore be used which makes a copy of a element by el-
ement. The point here is, that the copy-constructor of the class cXYZ will call the copy-con-
structor of the class cString and this will possibly be continued with copy-constructors of in-
stances of further classes declared in cString (and so on). Such implicit multiple initialisation
calls can need much time.

Rule 5(4) Be careful in transferring instances of classes to routines using "call-by-value" 
because of implicit calls of subroutines like constructors.

Remarks

• Programmers are completely unable to estimate whether and how often such implicit
calls of subroutines will occur in their programs if they use object oriented libraries,
especially of standard ones, if the source code is not available.

• The same argument as used for transferring variables to a subroutine can be true for
returning values from subroutines.

For further information about this problem see e.g. [Stroustrup, 1992].

6. Multi-dimensional Arrays

6.1 Internal index computation, addressing, and accessing

The ordering in which matrices are stored and accessed is central to the efficient implementation
of a code.
The use of multi-dimensional arrays has the following disadvantages.

• Different programming languages may have different strategies for storing values into
multi-dimensional arrays, e.g. Modula and FORTRAN. Such incompatibilities can be
significant if someone uses different programming languages for building an applica-
tion.

• To obtain the position for storing a value in a multi-dimensional array, programming
languages use an internal index computation (for storing the values internally in an
one-dimensional array).

Rule 6(1) If possible, use one-dimensional arrays instead of multi-dimensional ones (in 
order to save internal index computations).

Again, rule 6(1) is greatly in conflict with the aim of writing intuitively understandable pro-
grams.
Some compilers store multi-dimensional arrays by column- (e.g. FORTRAN) and others row-
wise (e.g. Modula, Pascal, Oberon, or C/C++). As 2 examples, the necessary index computation
for storing a number m into a n dimensional array  aArray[i1]...[in] of size [N1]...[Nn] will be
presented for

• C/C++ by computing  i = n+1− jij=1
n∑ * vNv=1

j−1∏  with leading dimensions N2,...,Nn;

• FORTRAN by computing i = 1+ j(ij =1
n∑ − 1)* vNv=1

j −1∏  with leading dimensions N1,...,Nn-1;
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and storing m into aArray[i].2 Note that the index counting in C/C++ starts normally with 0, in
FORTRAN with 1, whereas in Modula, Pascal, and Oberon the first index has to be defined by
the programmer and is represented internally by 0.

Remark The use of one-dimensional arrays and then doing the index computations like 
the compiler does has no advantage. The advantage lies in the possibility of 
formulating the problem in such a way so as to store values consecutively into 
the array which needs less index computations than unconsecutive storage.

The following example, using C, demonstrates that different implementations in the same pro-
gramming language can have implicitly different numbers of operations to solve the problem
[Kernighan & Ritchie, 1990; Kölsch, 1994].

int iI, iSum, iNo[1000], *pNo;
...

/* version 1 */
for (iI=0, iSum=0; iNo[iI]; iI++)

iSum += iNo[iI];
/* version 2 */
for (iI=0, iSum=0; *pNo; iNo++)

iSum += *pNo;
...

Version 1 of this example makes 4 additions in every iteration whereas in version 2 only 2 ad-
ditions are necessary. This comes from the additional internal index computation of using
iNo[i] in version 1 which operation *pNo does not have.

Rule 6(2) Use constructions which need minimal internal index computations.

Normally in higher languages arrays are of a type, e.g. int, double or more complex ones such
as record, objects etc. The time for physical addressing of array elements depends on this type
which has to be taken into consideration in order to reduce run-time costs.

Rule 6(3) Minimise the cost of addressing/accessing if using multi-dimensional arrays.

In order to explain rule 6(3) we use an example written in pseudo code.

I1 = 2;
...
FOR I=1 TO NVAR DO ***** version 1 *****

DEY[1,I,I1] = Y[I]
FOR J=1 TO K DO

YP[I] = YP[I] + (Y[I] - DEY[J,I,I0]) * GKS[J]
DEY[J+1,I,I1] = YP[I]

END
END
...
FOR I=1 TO NVAR DO ***** version 2 *****

DEY[I,1,I1] = Y[I]
FOR J=1 TO K DO

YP[I] = YP[I) + (Y[I] - DEY[I,J,I0]) * GKS[J]
DEY[I,J+1,I1] = YP[I]

END
END

Wild jumping in the physical addresses of a computer for storing values into an array slows
down an algorithm. It is better to address it consecutively within the multi-dimensional array
therefore reducing the time needed for physical addressing.
Version 1 is therefore the faster variant for languages storing multi-dimensional column orien-
ted, whereas version 2 is faster for row oriented languages.

2 The necessary information to store a value m  into  aArray[i] are the leading dimensions, the starting point
   for counting the elements of the array and the physical address of the first element.
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6.2 Page faulting

An essential point is the use of cache memory. If, for example, consecutively accessed values are
very widely distributed many unwanted adjacent elements may be copied into cache without
being operated upon.
In the following example we assume a cache memory of size 210 = 1024 elements of type
REAL.

 VAR
aArray : ARRAY[1..1024] OF ARRAY[1..1024] REAL;
dSum : REAL;
I1, I2 : INTEGER;
...

(* version 1 *)
FOR I1:=1 TO 1024 DO

FOR I2:=1 TO 1024 DO
dSum := dSum + aArray[I2,I1];

...
(* version 2 *)
FOR I1:=0 TO 1024 DO

FOR I2:=1 TO 1024 DO
dSum := dSum + aArray[I1,I2];

...

Both loops perform the same task but they address the array elements in a different order. In
version 2 elements are accessed consecutively, that is they appear in storage, whereas in version
1 they are accessed every 1024th element at a time. Thus, in version 1, one paging operation
must be performed for every addition. This is clearly very inefficient. Compare this with version
2 in which only one page copy is needed for every 1024 operations.
Excessive page operations of the type illustrated by version 1 are called page faults.

Rule 6(4) Try to limit the size of arrays so that they can fit directly into cache.

This problem clearly depends on the way in which the programming language stores array ele-
ments  and on the use of sophisticated algorithms for realising rule 6(4).
To minimize the number of paging actions is often possible to split an original large matrix
problem into a sequence of sub-problems on smaller cache sized sub-matrices by means of
special block or partitioned algorithms. For such special algorithms refer to the literature e.g. the
numeric of linear algebra.

Remark The efficient use of cache memory (thereby avoiding page faults) is essential in 
numerical linear algebra (vector- and matrix operations etc.).

6.3 Memory stride

The example in chap. 6.2 illustrates the importance of the order in which array elements are ac-
cessed. Formally speaking, in version 1 of this example the matrix is accessed with unit stride or
unit length 1 whereas in version 2 the matrix is accessed with stride 1024 or stride length 1024.
Generally, the stride of any structure (e.g. a row or column) in a host structure (e.g. a matrix)
can be defined as the increment in addresses between successive elements.

7. Mathematical Algorithms

7.1 Sophisticated algorithms

Chapters 7 and 8 include a wide field of essential points. For instance, how to implement a dif-
ferential equation solver efficiently or which linear algebra solvers perform no page faults are
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highly specialized tasks, which are not described here; for such issues refer to the special litera-
ture. Here we give an introduction to widely used libraries.

7.2 Standard Libraries

A simple technique to optimise program code is to use optimised (standard) libraries [Dongarra
& Walker, 1995].
As an example the BLAS (Basic Linear Algebra Subprograms) library is conceived to provide
highly machine-optimised code to programmers for elementary but often needed operations with
vectors and matrices.
Programmers have to keep the following problem in mind as illustrated with BLAS. BLAS is
available under Unix workstations and works together with several programming languages, but
the representation of arrays in BLAS routines is compatible with FORTRAN and incompatible
with Modula, Pascal, and C/C++ (cf. chapter 6).

Rule 7(1) Whenever possible use machine optimised (standard) libraries.

There are various gains in using (standard) libraries, such as

• improved portability. For most workstations such libraries are available at least as
source code in FORTRAN 77, FORTRAN 90, or C/C++.

• increased program readability. For example, BLAS forces the programmer to break up
the program into intuitively understandable vector or matrix operations instead of nests
of DO-loops and the resulting codes are therefore often better structured.

• safer code development. Writing your own code or copying it from books may intro-
duce program errors which can be very difficult to detect, especially in cases of com-
plex algorithms.

• extensive documentation. The documentation of such libraries is often extensive.

Note that libraries written by specialists are often optimised with respect to (mathematical) al-
gorithms. By using them you can directly access state-of-the-art technology without special
knowledge of what includes several person years of development. Today, the development of
new libraries as ScaLAPACK is done in modern programming languages such as FOTRAN 90
and C++.
Well-known examples for such de facto standard libraries are given in Table 1.
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Short Name Long Name Short Description Availability
BLAS Basic Linear Al-

gebra Subpro-
grams

Elementary routines for
vector-vector, vector-matrix,
and matrix-matrix;

Machine optimised
code and public do-
main as FORTRAN
version;

BLACS Basic Linear Al-
gebra Communi-
cation Subpro-
grams

MIMD message-passing li-
near algebra communication;

Machine optimised
code; Commercial

NAG Numerical Algo-
rithms Group

Collection of general nume-
rical routines;

Public Domain;

IMSL International
Mathematical
Standard Library

American version of NAG,
but smaller;

Commercial;

EISPACK Eigenvalues/Eigen
vectors Package

For computation of eigenva-
lues and eigenvectors of
matrices;

Public Domain;

LINPACK Linear Algebra
Package

General linear algebra
package;

Public Domain;

LAPACK Linear Algebra
Package

The successor to LINPACK
and EISPACK;

Public Domain;

ScaLAPACK Scalably Linear
Algebra Package

Extended LAPACK; Public Domain;

HARWELL         ÷ Collection of routines with
spe-cial ones for operations
with sparse matrices;

Commercial, in parts
public domain;

 Table 1: Collection of some of the well-known de facto standard libraries.

Rule 7(2) Whenever possible use mathematically, algorithmically optimised (standard) 
libraries.

Today, many servers offer public domain standard libraries. As an example Netlib and the eLib
are automatic repositories for general and mathematical software accessible directly by electronic
mail. For further details simply send the message send index or send index from <library
name> to one of the following internet addresses

• netlib@ornl.gov;

• netlib@nac.no (preferable from within Europe);

• eLib@zib-berlin.de (preferable from within Germany);

Netlib is also accessible via

• the World Wide Web (WWW). The URL is: http://www.netlib.org/index.html;

• anonymous ftp to: ftp.netlib.org;

• gopher. Point your gopher browser to: gopher.netlib.org;

as well as anonymous rcp, Xnetlib, and CD-ROM. More information can be found on the
homepage of Netlib.
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7.3 Built-in Functions

Some compilers provide so called built-in functions for several elementary operations. Those
functions are written in machine code and therefore fast. The availability of built-in functions
depends on the compiler.

Rule 7(3) Whenever possible use optimised built-in functions.

For example Modula provides DEC(i)  and INC(i) and C/C++ provides i-- and i++ which are
fast variants of i:=i-1 and i:=i+1.

7.4 Arithmetic Programming

In order to minimise the computation time of any program we have in general to reduce the
arithmetic operations, i.e. mathematical routines such like POWER, EXP, LN as well as binary
operations such as multiplication and addition.

7.4.1 S IMPLE ARITHMETIC TECHNIQUES

We now examine the arithmetic operations multiplication (division) and addition (subtraction).
The cost of these operations can generally be sorted in descending order as:

unnecessary arithmetic operations
> real multiplication (division) > real addition (subtraction)
> integer (index) multiplication (division) > integer (index) addition (subtraction)

7.4.1.1 Unnecessary Operations

By this, we mean operations such as multiplication with 1 or 0.

Rule 7(4) Avoiding multiplication with 0.0 and 1.0 as well as division by 1.0 and 
addition/subtraction with 0.0 can speed up the code.

7.4.1.2 Multiplication and Division

A good example is the evaluation of polynomials adegree*xdegree+...+a1*x+a0.

Rule 7(5) Use algorithms which provide a minimal number of binary operations.

VAR
iI : INTEGER;
sum : REAL;

BEGIN
sum := Coefficients[0];
FOR iI:=1 TO degree DO

sum := sum + Coefficients[iI] * x;
END;
...

END Polynomial;

This example demonstrates the computation of polynomials with the minimal number of mul-
tiplication by the Horner scheme ((adegree*x+adegree-1)*x+...)*x+a0 instead of using ade-
gree*POWER(x, degree)+...+a0*POWER(x,0.0) or anything similar. Note that there is a wide
class of complicated problems in which an algorithm with the minimal number of operations
cannot easily be found and described (cf. chap. 7.1).
Often divisions are slower than multiplication. Especially within loops, the use of the rules in
chap. 4 may be helpful.

...
dDivValue := 1.0 / x (* Version 1 *)
sum := Coefficients[0] * dDivValue;
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FOR iI:=1 TO degree DO
sum := sum + Coefficients[iI] * dDivValue;

END;

sum := Coefficients[0] / x;
FOR iI:=1 TO degree DO (* Version 2 *)

sum := sum + Coefficients[iI] / x;
END;
...

Rule 7(6) Use multiplication instead of division (especially within loops).

In version 1 there is only 1 division whereas in version 2 degree+1 divisions have to be done.

7.4.1.3 Mathematical functions
For instance, in cases of computing x3.0 it is faster to use x*x*x instead of POWER(x,3.0) be-

cause a power function often uses the algorithm 10
3.0 log10  x

.

Rule 7(6) Think about whether mathematical routines (e.g. POWER, LN) can be replaced
by faster algorithms.

7.4.2 T YPE CONVERSIONS

Pascal and other programming languages convert types within a program code automatically in
contrast to Modula in which it is done explicitly due to the strict rules of type conversion. The
following Pascal fragment demonstrates the problem.

var
iValue1, iValue2 : integer;
rValue : real;
...
iValue1 := iValue2 / rValue;

The term iValue2/rValue implicitly includes 2 type conversions. In Modula this translates to
INT(FLOAT(iValue2) / rValue) in which INT and FLOAT are functions for the conversion of
variables from one into another type. Such conversions are time consuming. The following rules
should therefore be considered:

Rule 7(8) Avoid type conversions by sophisticated program structuring.

Rule 7(9) In order to avoid using type conversions split algorithms into pieces in which 
operations are evaluated with variables of the same type.

Note, that similar techniques should also be used with constants.
The next example demonstrates rule 7(8). The faster version 2, which has no type conversion,
should be preferred.

VAR
iI : INTEGER;
dHelp : REAL;
dArray : ARRAY [0..1000] of REAL;
...

FOR iI:=0 TO 1000 DO (* Version 1 *)
dArray[iI] := iI;

END;

dHelp := 1.0;
FOR iI:=0 TO 1000 DO (* Version 2 *)

dArray[iI] := dHelp;
dHelp := dHelp + 1.0;

END;
...

Remark C/C++ has an implicit type conversion as do Pascal and FORTRAN. 
Nevertheless, my preference is, that it is safer to make type conversions 
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explicitly which is the better programming style since it allows for easy 
debugging and makes program code more understandable.

8. Program Structuring

The structure of the program can be built such that the program is fast or slow. This depends on
the selected programming language and on the compiler.

8.1 Statements for decisions

8.1.1 I F -T HEN -E LSE , C ASE STATEMENTS , AND LOOPS

The If-Then-Else and Case construction is widely used in programs. In order to build fast pro-
grams it is essential never to use such a statement within a loop or an iterated block (e.g. a rou-
tine).

Rule 8(1) Whenever an If-Then-Else (or Case) statements is independent of the loop (or 
iterated block) build the loop into that statement. Therefore double the loop (or 
iterated block) into the If (or all Case) and the Else part(s) of the statement.

VAR
I : INTEGER;
...
IF (a < b) THEN

FOR I:=0 TO 100 DO
...

END;
ELSE

FOR I:=0 TO 100 DO
...

END;
END;
...

This construction has to test the If-Then-Else statement only once. Building the If-Then-Else
statement into the loop would cause 100 such tests. Here the code is made faster but bigger.

8.1.2 I F -T HEN -E LSE AND CASE STATEMENTS

If-Then-Else statements are faster than Case statements in some programming languages.
Therefore we have the rule

Rule 8(2) Use the faster If-Then-Else instead of a Case statement.

8.1.3 I F -T HEN -E LSE STATEMENTS

If-Then-Else statements can be used quite inefficiently as the following example demonstrates.

...
IF (i < a) ...
IF (i < b) ...
IF (i < c) ...
...

In this code each of a sequence of If-Then-Else statements have to be evaluated. A construction
such as
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...
IF (i < a) THEN

...
IF (i < b) THEN

...
IF (i < c) ...

...

is faster.

Rule 8(3) Used nested if-statements instead of consecutive ones.

8.2 Loop statements

Applications made by some Modula compilers (MacMETH, em2) have different run-time be-
haviour when different loop construction are used, whereas C/C++ has no such differences
[Löffler & Fischlin, 1995].

Rule 8(4) Use the fastest loop construction provided by the compiler.

Refer to publications about benchmarks.

8.3 Procedures and Functions

The call of a routine costs more time as its parameter list increases in size. Therefore we get the
rule

Rule 8(5) Design your routines so that the required list of variables is minimized.

This rule can conflict with efforts to produce safe programs which do not use too many global
variables. However, an increase in safety by minimising interfaces which could lead to failures in
manipulating variables can also be achieved.

8.4 Lists and Trees

Elements of lists and trees are logically structured by pointers in which each element stores the
address in which another element of the list or tree is located in the memory. Standard examples
of structuring a list by such pointers are the single and double interconnection. In contrast to
arrays, lists and trees do not allow direct access to an element by addressing it. To get an ele-
ment out of lists or trees their logical structure must be scanned element by element via these
pointers. Working with lists and trees can therefore be very slow because of such extensive
scanning.

Elementary bench marking demonstrates that working with arrays is faster then using lists or
trees of the same size.

Rule 8(6) Think about whether the use of lists and trees can be replaced by arrays.

However, by using lists and trees instead of arrays a program gives a more flexible structure.

8.6 Recursion

Is easy to implement. The problem lies in the copying of (parts of) the recursive routine into the
RAM for execution which is time consuming and needs storage. Every recursion can be rewrit-
ten in a non-recursion algorithm, thus

Rule 8(7) Avoid recursions.
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Remark Lists, trees, and recursions are often the intuitive answer to the algorithmical 
question. Thus, the sections 8.4 and 8.5 are often difficult and unwanted to
realise.

9. Compiler options

Normally compilers provide several options. For example it is possible to

• generate native code for the special CPU and FPU of the used machine;

to check or uncheck e.g.

• array indices, sub ranges, pointer etc.;

• integer and real arithmetic for under- and overflow;

• division by zero;

which slows down the application by checking. Other options are special for code optimisation
in relation to run-time or to producing small code.

Rule 9(1) Inform yourself about and use the options which the compiler provides for 
optimisation.

Rule 9(2) For the final (debugged and stable) version avoid all options for generating 
debug information, especially ones for checking ranges, under-, and overflow 
etc.

10. Batch Runs

This short chapter covers with the alternatives interactive or batch run. Both of these have their
advantages and disadvantages. In relation to speed, batch is the faster alternative because many
time consuming processes as e.g. window handling, graphical output etc. are not used.

Rule 10(1) Think about running programs in batch mode.

Which of these alternatives is preferred is clearly a question of the purposes for which the pro-
gram has to be used.

Conclusion

In this paper we dealt with the problem of writing time optimised programs. The main rule for
writing such programs mentioned in the introduction is save operations whenever possible. In
10 chapters we presented rules and examples of how to achieve this. Therefore it becomes clear

• optimisation of programs can be difficult because of not seeing the problem(s);

• the aim of optimisation is highly compiler and system dependent;

• optimisation also depends on personal preferences of the programmer;
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• the given rules and optimisation in general may in conflict with other aims of pro-
gramming such as writing safe, short, or readable code;

We did not include special points of programming languages (e.g. of C++), but ones which are
relevant in general. For specialities please refer to the relevant literature.
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