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Individual based, stochastic forest patch models have the potential to realistically describe
forest dynamics. However, they are mathematically intransparent and need long computing
times. We simplified such a forest patch model by aggregating the individual trees on many
patches to height-structured tree populations with theoretical random dispersions over the
whole simulated forest area. The resulting distribution-based model produced results similar
to those of the patch model under a wide range of conditions. We concluded that the height-
structured tree dispersion is an adequate population descriptor to capture the stochastic
variability in a forest and that the new approach is generally applicable to any patch model. The
simplified model required only 4.10 of the computing time needed by the patch model. Hence,
this new model type is well-suited for applications where a large number of dynamic forest
simulations is required. ] 1998 Academic Press
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INTRODUCTION

The dynamics of populations are determined by birth,
death, the change in the state of individuals, and the
interactions between them and also by exogenous events
such as disturbances. Individuals differ with respect to
their properties or states, such as size or age, they may
experience spatially heterogeneous living conditions,
such as nutrient supply, and they may also be affected
differentially by random events, i.e. by demographic or
environmental stochasticity (Turelli, 1986). These
differences among indi-viduals lead to a variability in the

population which can strongly influence its overall
dynamics (Koehl, 1989; May, 1986).

Individual-based, stochastic models are one approach
to account for this variability, since they describe
explicitly the processes and interactions of the indivi-
duals and also include random events, e.g. the death of
one particular organism. Thus, they have the potential to
describe the dynamics of entire populations realistically
(Grimm et al., 1996; Murdoch et al., 1992), i.e., close to
what can be observed in nature, and to give insight into
the mechanisms of community dynamics (McCook,
1994; Shugart, 1984).

In describing the dynamics of forest populations and
communities, the individual based patch (or gap) model
approach has a long tradition. It reaches back to the
development of JABOWA (Botkin et al., 1970; Botkin et
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al., 1972a; Botkin et al., 1972b) and its successors like
FORENA (Solomon et al., 1981), FORET (Shugart
and West, 1977), FORECE (Kienast, 1987), FORSKA
(Leemans and Prentice, 1989), ZELIG (Urban et al.,
1991), SIMA (Kelloma� ki et al., 1992), and the models
FORSUM (Kra� uchi and Kienast, 1993) and ForClim
(Bugmann, 1994; Bugmann, 1996; Fischlin et al.,
1995).

A patch model uses Monte Carlo simulations to
describe the stochastic dynamics of individual trees or
cohorts of trees on many small patches at a specific site.
These patches have the approximate size of the canopy
area of one dominating tree (about 1�12 ha). The con-
cept is based on two fundamental assumptions: (1)
Interactions among trees occur only locally and
population densities on these small areas are too small
to average out stochastic effects in the tree dynamics
(Drury and Nisbet, 1973; Remmert, 1991; Watt, 1947).
(2) Usually, birth and death are treated as intrinsicly
stochastic processes. Consequently, the resulting forest
succession is a stochastic process which accounts for
the stochastic variability in forests (Shugart and West,
1979).

Besides the advantage of including variability, the
basic idea of patch models to simulate single trees is
straightforward and easy to comprehend. Much effort
and expertise have been put into the accurate formula-
tion of the model equations and the identification of the
model parameters. Patch models have been tested and
applied under various conditions (Bugmann, 1994;
Bugmann and Fischlin, 1996; Bugmann and Solomon,
1995; Lischke et al., 1998; Kelloma� ki et al., 1992;
Prentice, 1986; Shugart and Prentice, 1992; Solomon et
al., 1981). Thus, they are considered as reliable models
in studying and projecting forest dynamics.

However, forest patch models, together with other
stochastic individual based models have several
disadvantages. They are not well suited to be analysed
mathematically, partly because they are often only
defined as an algorithm or a computer code and not in
a mathematically closed form. Analytical equilibrium
and stability analysis is practically impossible for
models of this type. Moreover, to obtain sound results,
many variates have to be sampled from the stochastic
processes described by such a model (Bugmann et al.,
1996). Typically, these Monte Carlo methods require
large computing times, which renders the model
ungainly for applications where many or long simula-
tion runs are required.

We asked whether it is possible to derive from such
an individual based model a simpler, faster, and mathe-
matically better tractable model, which produces

similar results for the expected values of the overall
dynamics.

One obvious solution is to aggregate individuals into a
hierarchically higher level (O'Neill et al., 1986), such as
(sub)populations described by densities and to replace
the random variates of the process rates resulting from
the Monte Carlo simulation by average rates. Such an
approach belongs to the class of problems which deals
with the aggregation of components of ecological models
from a lower to a higher hierarchical, temporal, or spatial
level (Auger and Roussarie, 1994; Cale and Odell, 1979;
Gard, 1988; Gardner et al., 1982; Iwasa et al., 1989;
Murdoch et al., 1992).

A crucial question in this context is: What is the mini-
mal level of aggregation required to incorporate the
intrinsic variability of a forest? Obviously, it can not just
be the averaged trees of each species, since trees and their
living conditions differ and ``the average of the solution of
an equation, in general, is not the solution of the
averaged equation'' (Hornung, 1996). Thus, how can we
``...consider the effects of patchiness, which not only affect
the statistical variability but have a profound effect on
the nature of the dynamic interactions.'' (Steele, 1989)?

Examples for aggregating tree individuals to sub-
populations are the model FLAM by Fulton (1991)
which was derived from an individual based forest patch
model, and the canopy layer model FORMIX(2) by
Bossel and Krieger (1991, 1994). In these models trees of
similar height are combined to height or developmental
stage classes. However, both models are still based on
Monte Carlo simulations in order to include variability:
Birth and death, in FLAM also growth, are formulated
as random events, and both models simulate the
dynamics on many patches.

In this paper we present a new type of forest dynamics
models, resulting from the aggregation of a forest patch
model, which also uses an explicit height structure, i.e.,
assumes the forest consists of several discrete height
layers (discs). In this respect the approach is similar to
structured population models (Metz, 1986), which have
also been applied to forests (Karev, 1994; Kohyama,
1992; Pacala and Deutschman, 1995). The new concept
of this model type is to take into account the stochastic
variability in a forest by horizontal distributions of tree
densities, which replace the distinct patches and the
random variates of the Monte Carlo simulation used in
patch models. One example is the distribution based
climate driven forest model DisCForM, which we aggre-
gated from the forest patch model ForClim (Bugmann,
1994; Bugmann, 1996; Fischlin et al., 1995), hereby tak-
ing advantage of the expertise contained in the latter
model.
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MATERIAL AND METHODS

The Patch Model FORCLIM

ForClim is a forest patch model, which can be
generally used where the needed species parameters are
available. It was developed to study the influences of a
changing climate on forests in the northern temperate
and boreal zone, and particularly in the European Alps.

We focus on the submodel ForClim-P (version
2.4.0.2), which uses as input the expected values of
bioclimatic variables, e.g., drought stress or day-
degree-sum, calculated in advance by the submodel
ForClim-E from inter-annual means, standard devia-
tions and correlation coefficients of monthly temperature
and precipitation.

ForClim-P simulates the stochastic dynamics of tree
cohorts for any number (e.g., 30 for Central Europe; see
legend of Fig. 3) of different species usually on 200
patches which are assumed to be independent of each
other. These patches represent different realisations of
the stochastic process running at a specific site. We inter-
pret these realisations in the following as different
patches of a forest area with spatially homogenous soil
and climatic conditions. The model follows the fate, i.e.,
establishment, growth, and death, of every single tree
cohort. All processes depend explicitly on climate and on
the available light intensity at the tree top. Birth and
death are formulated stochastically, i.e., as probabilities
for each cohort, that individual trees are born or die.
Since the focus of the model is on the successional
dynamics of forests, population genetics are neglected.
Furthermore, establishment occurs from a constant seed
pool, which is independent from the parent population
density.

Simulation Environment

The new model DisCForM was implemented and
developed with the interactive part of the simulation
environment RAMSES2 (Fischlin, 1991). To improve the
performance of the implementation (Doud, 1993; Lo� ffler,
1995), we optimized the code by evaluating time and
state independent expressions in advance, outside
the integration loop. For comparison, simulations of
DisCForM and ForClim-P were run on a SUNserver
MP630 (40 MHz) under RASS (Thoeny et al., 1994), the
batch simulation server of RAMSES.

Sites and Forest Data

The simulations of both models were run for 1200 years
with a yearly time step. Input included the same constant
bioclimatic and edaphic data from seven climatically dif-
ferent sites in Switzerland (Table 1).

For the colline, upper montane, and subalpine vegeta-
tion belt, represented by the sites Bern, Davos, and
St. Gotthard, respectively, we compared qualitatively the
simulated equilibrium species compositions to data of
species compositions (Fig. 3d), compiled from the First
Swiss National Forest Inventory (WSL, 1997), which
consists 0.05 ha sample plots on an 1-km grid. In
Switzerland the majority of the forests are managed. In
order to include only plots in forests as close to natural
as possible and to obtain still a reasonable sample size
we, therefore, restricted the evaluated sample plots to all
those, where the last management was longer than 25
years ago and regeneration was natural. To take into
account only plots with similar conditions, plots from 50
m below to 50 m above the altitude of the sites from
surrounding regions (Table 2) were included; the regions
had to be chosen rather large to increase the sample size.
The plots were split according to the estimated age of the
surrounding stands, i.e., whether they were likely to
represent rather an early or an intermediate successional
state (stand age <80 or �80 years). For stands of mixed
developmental state stand age was not available; we
assumed them to correspond to the mixed age structure
of the shifting-mosaic climax (Bormann and Likens,
1979; Remmert, 1991). Table 2 shows the numbers of
plots in the three age classes. Wood biovolumen was
estimated (Kaufmann, 1996) from stem diameter at
breast height (DBH) for all trees with DBH>12cm and
multiplied by species specific density factors (Knigge
and Schulz, 1966; Lakida et al., 1995; Niemz, 1993;
Trendelenburg and Mayer-Wegelin, 1955) to obtain
biomass in dry weight, same as in the models.

TABLE 1

Characteristics of Sites Used to Test the Forest Models DISCFORM and
FORCLIM-P

Elevation Annual mean Annual precipi-
Site (m.a.s.l.) temperature (%C) tation sum (cm)

Locarno 379 11.8 184.6
Sion 542 9.7 59.7
Bern 570 8.4 100.6
Huttwil 639 8.1 128.7
Davos 1590 3.0 100.7
Bever 1712 1.5 84.1
St. Gotthard 2090 &0.07 216.2
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TABLE 2

Characteristics of Swiss National Forest Inventory Plots (WSL, 1997) Included in the Evaluation of Near-Natural Forest Composition: sites, vegetation
zones represented by the sites, regions included in evaluation, and number of plots of different stand ages

Numbers of plots of stand age (years) Number of species in equilibrium
Swiss regions included in

Site Vegetation belt evaluation <80 �80 mixed FC DFD DFV Data

Bern Colline
Jura, Central Plateau,

Prealps 9 14 8 10 2 16 7
Davos Upper montane Alps 9 15 31 5 2 8 5

St. Gotthard Subalpine Alps 2 6 20 3 1 3 3

Note. Number of species with biomass >10 of total biomass in equilibrium of simulations with ForClimm-P (FC), DisCForM without
variability (DFD) and with variability (DFV), and in the mixed age plots of the NFI (Data).

Similarity Index and Run-Time Measurment

As a quantitative measure of similarity between the
results (x and y) of the two models we took the similarity
index S (Bugmann, 1994; Cormack, 1971; Wolda, 1981)
and extended it to time series by

S=1&
�i �k |x i, k&y i, k |
�i �k (x i, k+y i, k)

(1)

with k running over all species and i over the entire
simulation period, encompassing transient and steady
state behaviour. Computing times were measured by
recording start and end time of each simulation.

Data of Tree Dispersions

For the evaluation of spatial tree distributions we used
the data of an extensively managed larch forest in
Samedan, which is located in the Upper Engadine, Swiss
Alps (Baltensweiler and Rubli, 1984). These data are
given as DBH and position of each tree on a profile con-
sisting of 14 quadratic plots, each with a size of about
100m2. The tree density n (1�100m2) in each plot, the
mean tree density n� , and the empirical distribution of the
tree density over all plots were determined separately
for each of four DBH-classes (0�17.9cm, 17.9�35.7cm,
35.7�53.6cm, and 53.6�89.3cm). The DBH was trans-
formed into height by using the empirical allometric
relationship (Ker and Smith, 1955)

H=137+
2(Hmax&137)

DBHmax

} DBH&
(Hmax&137)

DBH 2
max

} DBH 2

with the maximum height Hmax and maximum DBH
DBHmax , which are for larch equal to 52m and 1.85m,

respectively (Bugmann, 1994). This leads to the height
classes 0�10m, 10�19m, 19�26m, and 26�38m.

Then we tested by a /2 goodness of fit test (significance
levels :=0.01, 0.05, 0.1, 0.2) the hypotheses H0, 1 and
H0, 2 , that the empirical distributions in the distinct
height classes can be described by a Poisson distribution
and by the positive part of a Normal distribution with
both mean and variance equal to n� .

DERIVATION AND STRUCTURE OF
DISCFORM

In a first attempt to aggregate the patch model, we
modelled tree populations deterministically both with
and without height structure. Because those models
could not reproduce the patch model's population
dynamics, but yielded forests with too few species in the
equilibrium, we concluded that the stochastic variability
between patches cannot be completely ignored.

The only interaction between trees modelled explicitly
in ForClim-P, as in many other forest patch models, is
the inter- and intraspecific competition for light. The
light available for each tree is reduced by the shade of all
trees above its top (Fig. 1a); the leaves of the trees are
assumed to be concentrated at their tops. This means
that the actual height structure, i.e., the height distribu-
tion of the tree tops in a patch at a certain time, deter-
mines the vertical light gradient in this patch.

The tree tops in ForClim-P are not only distributed
vertically. Whereas in each single patch all trees are
assumed to be located at the same position, tree densities
differ between patches due to the stochastic model for-
mulation. This corresponds to a horizontal distribution
of trees of a certain height over all patches. The spatial,
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FIG. 1. Distribution of trees and light in a forest, as simulated by a conventional forest patch model and the new model DisCForM. In both
cases the leaves are assumed to be concentrated at the tree top. The grey areas portray the shading by the canopy: (a) In a conventional forest patch
model individual tree dynamics produce a continuous vertical distribution of tree heights and light within each distinct patch; (b) In DisCForM the
patches are lumped together to form a forest, which consists of a stack of discrete height classes (``forest discs,'' here three height classes are shown).
Within each forest disc, trees and the available light are distributed horizontally; (c) Density functions of tree population densities, (grey columns)
and the available light (solid black line), in three forst discs as modelled by DisCForM. Within these discs the tree dispersion is assumed to be random
and is modelled with a Poisson distribution.

i.e., vertical and horizontal, and temporally changing dis-
tribution of tree tops determines the spatial distribution
of light (Fig. 1a) and influences tree to tree competition
for light throughout the forest.

The new model DisCForM focuses on the temporal
dynamics of these spatial tree and light distributions
(Fig. 1b). The spatial distributions are represented by fre-
quency distributions (Fig. 1c) of the density of tree tops
per unit area and of the light intensity at a certain height.

The main differences between DisCForM and a patch
model are: (1) The continuous height distribution of the
trees is replaced by a discrete height structure. (2) The
entire forest is simulated at once in each time step. The
spatial distribution of trees per unit area is modelled by
the assumption that in each time step all trees of a certain
height are distributed randomly over the forest, which
results in a Poisson distribution. Consequently, it is no
longer feasible nor desirable to trace the fate of individual
trees or cohorts.

With these assumptions and the process functions and
parameter values of ForClim-P we get the following dis-
tribution based, height structured population dynamics
model (a summarisation of the symbols is contained in
Table 3):

Ns, i is the average population density per patch area of
trees of species s in the height class i in the entire forest.

The rate of change of Ns, i at time t (Eq. (2)) is deter-
mined by death Ds, i (Eq. (3)), growth Gs, i (Eq. (4)) and
birth Bs, i (Eq. (5)). Trees grow into height class i from
height class i&1 (Gs, i&1) and leave height class i by out-
growing (Gs, i). Birth (Eq. (5)) is restricted to the lowest
height class (i=0). These processes depend not only on
state but they are also driven by time dependent input
variables, namely temperature, precipitation and
nitrogen. For easier reading we omit all explicit notation
of time dependence in the following equations:

dNs, i

dt
=&Ds, i

death

+Gs, i&1&Gs, i

growth

+Bs, i

birth

(2)

Ds, i=(+const, s+(1&+const, s) } +� s, i) } Ns, i (3)

Gs, i=
#� s, i

hi+1&hi
} Ns, i (4)

Bs, i={0,
;� s ,

i>0
i=0.

(5)

The species specific death, growth, and birth rates
+� s, i , #� s, i , and ;� s are the expected values of the light
dependent rates , +s, i (l ), #s, i (l ), and ;s(l ) (for the specific
formulation of the rates cf. Appendix 1). Since light
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TABLE 3

Symbols Used

Symbol Meaning Unit

t Time year
hi Height of lower boundary of height class i m
s Species index
Ns, i Average population density of species s in height class i (per unit area) m&2

Ds, i Dying trees of species s in height class i m&2 year&1

Gs, i Trees of species s growing from height class i to height class i+1 m&2 year&1

Bs, 0 New saplings of tree species s m&2 year&1

+� s, i , #� s, i , ;� s Expected values of mortality, growth, and birth rates with respect to light intensity year&1, m year&1, m&2 year&1

+s, const Constant mortality of species s year&1

+s, i (l ) Stress induced mortality of species s at light intensity l in height class i year&1

#s, i (l ) Per tree growth rate of species s at light intensity l in height class i m year&1

#s, i, max Maximal diameter increment of species s in height class i m year&1

|s, i Diameter to height increment conversion factor ��
Cs Climate dependence of growth of species s ��
g1, s , g2, s , g3, s Species parameters for light dependence ��
;S(l ) Birth (establishment) rate of species s at light intensity l m&2 year&1

l;crit, s Critical light intensity for establishment of species s ��
;max, s Maximal establishment rate of species s, climate dependent year&1

fY( y) Probability density function of random variable Y ��
Li Light in height class i (fraction of full light); random variable ��
Xs, j Population density of species s in height class j; random variable m&2

` unit area (set to usual patch size, 833m2=1�12ha) m2

as, j Specific leaf area of trees of species s in height class j m2

LAIi Leave area index in height class i; random variable ��
: Extinction coefficient (set to 0.25) ��
+LAIi

, _LAIi
Mean and standard deviation of leaf area index in height class i ��

intensity is a random variable, these expected values are
calculated with the probability density function fLi

of
light intensity Li in height class i by

.� =|
�

&�
.(l ) } fLi

(l ) dl=|
1

0
.(l ) } fLi

(l ) dl

with .=+s, i , #s, i , ;s . (6)

In order to be able to use (6) we have to determine the
light density function fLi

.
An essential assumption in our approach is that all

trees of each species s in each height class j are randomly
distributed over the patches, which for the tree popula-
tion densities Xs, j leads to a Poisson distribution with the
mean Ns, j . Thus, the tree dispersion in each height class
is independent of all other height classes. The Poisson
distribution is then approximated by a Normal distribu-
tion with the same mean Ns, j and the standard deviation
- Ns, j .

Particularly for small means of a Poisson distribution
this seems to be a crude approximation. Yet, tests with
random numbers drawn from Poisson distributions with
various parameters and from corresponding normal

approximations which were truncated at zero and scaled
to the area of one, indicated that the approximated dis-
tributions were satisfactorily similar in position and
shape to the original ones. Additionally, the distribution
of a linear combination of two Poisson distributed
random variables was similar to the truncated normal
distribution, which was obtained by first approximating
the two Poisson distributions by Normal ones, then
determining the Normal distribution of the linear
combination of the two random variables, and then
truncating and scaling this distribution.

This allows the following transformations:
Given a tree density of species s in height hj of Xs, j trees

per unit area ` (size of one patch) and a species and
height specific, constant leaf area as, j per tree, the leaf
area index LAIi in height class i is a random variable
defined by

LAIi=
� j>i �s Xs, j } as, j

`
(7)

Since LAIi in height class i is a linear function of the nor-
mally distributed tree densities Xs, j in all height classes
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above class i, it is also normally distributed with the
parameters

+LAIi
=

1
`

:
j>i

�
s

Ns, j } as, j ,

(8)
_LAIi

=
1
` �:

j>i

:
s

Ns, j } a2
s, j .

With the full light intensity (=1) above the topmost
height class and a the extinction coefficient of leaves, the
light Li which is transmitted down to height class i is
described by Li=e&: } LAIi. Thus, a certain light intensity
Li in height hi is reached by the leaf area index LAIi ,
which fulfils

LAIi=&
ln(Li)

:
(9)

Using transformation (9), the light density function fLi

can be expressed by the density function of the leaf area
index fLAIi

which is a normal distribution with the
parameters +LAIi

and _LAIi
(Eq. (8)).

If fY(y ) is the density function of a random variable Y
at a specific realisation y and X is another random
variable X=h(Y ) with a unique function h and with the
density function fX , then fY ( y) can be expressed by
fY( y)=fX(h( y)) } |dh( y)�dy| (Fisz, 1980). Hence,

fLi
(l )= fLAIi \&

ln(l )
: + }

1
l } :

. (10)

The density function fLi
is scaled to 1 by �1

0 fLi
(l ) dl =

!
1

to partly compensate the errors introduced by replacing
the Poisson by not truncated Normal distributions.

In the implementation light intensity was discretized
into 10 light classes !, to be able to compute light
dependent rates once in advance for accelerating the
code. In this discrete formulation (6) turns to

.� = :
9

!=0

.(l!) } (FLi
(l!+1)&FLi

(l!)), (11)

where FLi
is the distribution function of the light inten-

sities which we can express by the normal distribution
function of the leaf area index with the parameters +LAIi

and _LAIi
(Eq. (8)) by FLi

(l )=FLAIi
(&ln(l )�:). With (11)

the system of ordinary differential equations (2) can be
solved.

EMPIRICAL TREE DISPERSIONS

The evaluation of the tree dispersion data from
Samedan (Fig. 2) indicates that the choice of a Poisson

FIG. 2. Empirical and theoretical spatial tree density distribution
(dispersion) of larch trees split into four height classes. Data from
Baltensweiler and Rubli (1984) showing the frequencies (bold lines)
over a profile of 14 plots of 100m2 size each. Lines show the correspond-
ing probability density functions of the Poisson distribution. For three
of four height classes the hypothesis that the data can be described by
a Poisson distribution (H0, 1) and its approximation (H0, 2) could not
be rejected for the significance levels (:=0.2, ..., 0.01). The hypotheses
were rejected only for height class 19�26m (at :=0.1 (H0, 1) and
:=0.05 (H0, 2), respectively).

distribution (hypothesis H0, 1), and also of its normal
approximation (hypothesis H0, 2) for the theoretical tree
dispersion, is acceptable. For three of four height classes
both hypotheses could not be rejected (tested levels of
significance: :=0.2, 0.1, 0.05, 0.01); only for one height
class they were rejected (at :=0.1 (H0, 1) and :=0.05
(H0, 2)).

BEHAVIOR OF DISCFORM

To compare the results of DisCForM to those of its
predecessor ForClim-P, simulations were carried out for
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FIG. 3. Qualitative comparison of forest compositions at three selected sites in the Swiss Alps (see Table 1) representing the colline (Bern), upper
montane (Davos) and subalpine (St. Gotthard) vegetation belt: (a) simulations with the patch model ForClim-P (Bugmann, 1994; Fischlin et al.,
1995); (b) simulations with the aggregated model DisCForM without variability; (c) simulations with DisCForM with variability; (d) data of the
first Swiss National Forest Inventory (WSL, 1997). Please note the different scales of biomass. ``Other species'' are: Pinus silverstris, Taxus baccata,
Acer campestre, Acer platanoides, Acer pseudoplatanus, Alnus glutinosa, Alnus incana, Anus viridis, Betula pendula, Carpinus betulus, Castanea sativa,
Corylus avellana, Fraxinus excelsior, Populus nigra, Populus tremula, Quercus pubescens, Salix alba, Sorbus aria, Sorbus aucuparia, Tilia cordata, Tilia
platyphyllos, Ulmus glabra. Simulated biomass comprises woody and leaf biomass of trees higher than 1.37m, biomass in data woody biomass from
trees with DBH>12cm. All biomass values are given in t dry weight�ha.
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seven different sites in Switzerland (Table 1) with the
same bioclimatic variables as inputs for both models. In
all simulations the same 30 tree species (see legend Fig. 3)
were used. The continuous time model DisCForM run
with the explicit Euler method with a fixed yearly time
step. The light distribution was discretized into 10
classes, the height into 15 classes.

Figure 3 shows the results of both models for three
sites. In first simulations with DisCForM we assumed a
uniform spatial tree distribution, i.e., set the variance of
the tree distribution to 0. In these simulations (Fig. 3b)
less species than in the data (Fig. 3d) and in the patch
model simulations (Fig. 3a) could coexist in equilibrium
(Table 2); e.g. at the subalpine site only one of three
species present in the ForClim-P simulations and in the
data survived.

Therefore, in the following simulations the tree
distribution variance was set to the average population
density in each height class, which corresponds to a
random tree dispersion. This leads to results (Fig. 3c)
which correspond to the ForClim-P simulation at all
three sites in the overall pattern of the species composi-
tion, especially for the dominating species, and yields a
slightly higher biodiversity than the ForClim-P simula-
tions (table 2). Deviations occur mainly in the total
biomass and particularly during early succession.

Both models differ from the data (Fig. 3d) of the less
abundant species but reproduce to a same extent the

FIG. 4. Comparison between the overall behaviour of the new model DisCForM and that of the patch model ForClim-P (Bugmann, 1994;
Fischlin et al., 1995) in terms of computing time and degree of discretization of the tree heights; similarity indices (rhombi) and computing time
(circles) were averaged over six sites in the Swiss Alps (Table 1) and are displayed vs. the number of height classes in DisCForM. Similarity indices
(1) were computed from species abundances (t�ha) over the entire simulation period. The computing time DisCForM needed is shown as a fraction
of the time needed by ForClim-P (t1000). Error bars: \1 standard deviation.

main characteristics of the observed species composi-
tions: the species-rich, Fagus silvatica dominated forest in
the colline zone, the Picea abies dominated needle-leaf
forest in the upper montane zone, and the Larix
decidua�Pinus cembra�Picea abies forest in the subalpine
zone. The transition of the simulated total biomass from
low values in early succession over a maximum in inter-
mediate succession to a lower level in the equilibrium is
also indicated in the data of the colline and subalpine
zone. The main deviations are in simulated biomass,
which is considerably higher than in the data, and in the
simulated portion of Picea abies, which is too low at
Bern, and too high at St. Gotthard. Additionally, the
number of equilibrium species in the data is slightly lower
than in the simulations with ForClim-P and
DisCForM, whereas higher than in the DisCForM
simulations without variability.

A quantitative comparison of similarity and efficiency
between the two models is shown in Fig. 4. At each site
DisCForM was run with various height discretizations
(2, 5, 10, 15, 20, 30, and 60 height classes). Each simula-
tion of DisCForM was compared to the corresponding
ForClim-P simulation by calculating the similarity
index (Eq. (1)) and measuring the relative computing
time. The shown values are averages over all six
simulated sites.

The quality of the results, as well as the computing
time, depended strongly on the height discretization. The
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optimum combination of similarity and efficiency could
be reached with 15 height classes, with a computing time
of about 4.10 (105 s on a SUNserver MP630) of the time
needed by ForClim-P and a maximum similarity index
of about 0.76. With respect to the model intrinsic
uncertainties of ForClim-P the difference expressed by
this similarity index might still be significant (Bugmann,
1994).

DISCUSSION

The presented derivation of a distribution-based,
structured population model from an individual-based
model is a stochastic, approximate aggregation, combin-
ing the concepts of Iwasa et al. (1987; 1989), Gard
(1988), Murdoch et al. (1992), and Auger (1994).

The use of approximations was necessary, because a
perfect stochastic aggregation (Gard, 1988), where the
aggregated model contains exactly the same dynamic
information about the aggregated variables as the
individual based one, was not possible. Forests can be
conceived as systems with only local interactions
between sessile individuals and small population sizes
in subunits, which is depicted, e.g., by the patch
model approach. For such models, a direct aggregation
of individuals to a population by simply letting their
numbers go to infinity is difficult, if not impossible (Metz
and de Roos, 1992).

The central assumption and approximation used
in this model aggregation were the random spatial dis-
tribution of the trees in each height class and the
approximation of the resulting Poisson distribution of
the tree densities by a matching Normal distribution. The
latter equivalent is rather crude for small means, but
the evaluation of the empirical spatial tree distribution in
the larch forest at Samedan suggests that this assumption
might be acceptable in a majority of cases. Also in
various studies of natural and near-natural forests
(Abbott, 1984; Stoll et al., 1994; Szwagrzyk and
Czerwczak, 1993; Ward and Parker, 1989; Ward et al.,
1996; Williamson, 1975) the spatial tree distribution was
close to random with a tendency to aggregated for young
and to uniform for old trees.

The distribution-based approach produces similar
results as the patch model approach. However, the
results differ in details, particularly in the increase of
biomass in early succession, accompanied with an
overshooting. This is probably due to the height dis-
cretization, since in simulations with smaller height
classes (not shown) the increase was much smoother.

The increased biodiversity produced by DisCForM
simulations might indicate that the random distribution
of the trees offers a too wide range of light regimes;
reducing the variability will presumably improve the
results.

The comparison of the simulations to the NFI-data
was impeded by the fact that unmanaged and rarely
managed forests are scarce in Switzerland. Thus, only few
NFI-plots could be evaluated, the considered forests are
probably not completely natural, and the samples had to
be chosen from rather large regions.

Nevertheless, the results can give indications about the
validity of ForClim-P and DisCForM. Both models
overestimate total biomass. This is probably due to the
exponential allometric relationship Bstem=0.12 } DBH2.4

used to calculate stem biomass Bstem from DBH. Since in
the models biomass is only an output variable, i.e., does
not feed back to the dynamics, correcting this formula
(e.g., to the sigmoid one proposed and fitted to NFI-data
by Perruchoud, 1996) will only affect total biomass, not
the general results.

The major patterns of species composition, such as the
forest types and the temporal development of biomass
are reproduced by the models. The high portion of Picea
abies in the data of the colline zone might be due to
former management, whereas its high portion in the St.
Gotthard simulations has probably to be attributed to
the use of average instead of temporally varying climatic
input (Bugmann, 1997). Simulations with the version
ForClim-E�P of the patch-model which allows climate
to fluctuate stochastically, e.g., lead to a strong suppres-
sion of Picea abies and a forest consisting of Larix
decidua and Pinus cembra. Hence, besides spatial
also temporal variability has the potential to influence
forest dynamics. Such temporally variable input can
presumably be incorporated into the aggregated model
by a temporal aggregation of climate dependence
functions (Lischke et al., 1997a; Lischke et al., 1997b).

The general form of the aggregated model resembles
a height-discrete, time-continuous version of the con-
tinuity equation forest model of Kohyama (1992; 1993;
1995); i.e., it is an intermediate between this partial
differential equation model and a discrete forward one-
step transition matrix model (Lefkovitch, 1965; Takada
and Hara, 1994).

However, there are differences. DisCForM takes
into account the spatial dispersion of the trees, which
determines through the LAI and light distributions the
distributions and means of the process rates.

Kohyama's first models (e.g., 1991) include variability
by a diffusion term, where the diffusion constant, which
corresponds to the variance of the growth rate, is derived
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from the mean growth rate. The mean growth rate in turn
is a function of the mean cumulative basal area. Thus,
there is no feedback from the spatial tree distribution to
the dynamics. Since the diffusion term had no significant
influence on the simulations, it was omitted in subse-
quent model versions (e.g., Kohyama, 1992). Yet, later
Kohyama (1993; 1995) reintroduced spatial variability at
a larger scale by the concept of ageing and dying patches
(same as Karev, 1994) and by seed dispersal.

In DisCForM, in contrast, the tree and LAI distribu-
tion feeds back to the mean process rates. Since the
connecting functions are nonlinear, these means can
have significantly different values compared to those
obtained by applying the functions to the mean LAI
(which corresponds to the cumulative basal area).
Consequently, in our simulations omitting variability
produces considerably different results.

The aggregated model DisCForM has a number of
advantages over the patch model and over another
simplification of a patch model.

The difference in the outcome of DisCForM to the
results of its predecessor is qualitatively minor, although
quantitatively significant, and small with respect to the
predictive uncertainties of both models. With an index of
about 0.76 DisCForM's similarity to ForClim-P is in
the same range as the similarity of the model FLAM
(Fulton, 1991) to the patch model FORSKA (Leemans
and Prentice, 1989), from which it had been derived, with
an index of 0.8. FLAM also uses a discrete height struc-
ture, but still describes the dynamics of many patches by
Monte Carlo simulations. Since the similarity indices of
DisCForM and FLAM to their parent models do not
differ much, we can conclude that the difference between
DisCForM and ForClim-P has to be contributed
mostly to the height structure which implies that the
utilization of tree dispersions and of stochastic replicates
of patches is almost equivalent. Such a predominant
effect of height structure on forest dynamics has also been
found by Kohyama (1993).

The efficiency gain of DisCForM vs. ForClim (4.10
relative computing time) is considerable. It is a little
bit higher than that of FLAM vs. FORSKA (50 relative
computing time). In addition to this similar relative
performance, the absolute performance of the new
approach can be judged as better. This is due to the use
of theoretical distributions instead of Monte Carlo
simulations. DisCForM simulates the theoretical dis-
tribution of the tree species, including its expected value,
in one single simulation run. In contrast, patch models
such as ForClim, FORSKA, and FLAM simulate many
patches, and computing time increases linearly with the
number of patches (cf. Appendix 2).

Another advantage of the new model type is its
formulation in a closed form as a system of coupled
ordinary differential equations. This formulation allows
the numerical application of well established mathemati-
cal methods (e.g., equilibrium- and stability-analysis) to
forest models which is difficult for models formulated as
Monte Carlo algorithms such as FLAM or conventional
patch models.

Not only does the model aggregation yield a technical
improvement, but also new insights into forest dynamics.

In the model aggregation, the assumptions underlying
the individual based model, together with the formula-
tion and parametrization of the processes were retained;
we only shifted the focus from single trees with height as
the main characteristic to tree subpopulations in distinct
height classes. The new model differs from its predecessor
in only one central assumption: it assumes a random tree
dispersion a priori, whereas in the individual based
model the dispersion emerges from the individual pro-
cesses and interactions. Since this assumption is the only
deviation, comparing the results of the new model with
those of its predecessor can be used to assess the assump-
tion's validity.

We approximated the vertical�horizontal tree distribu-
tions by independent layers and random tree dispersions.
That means we ignored the single tree histories and
assumed the trees to be newly distributed over space in
each single time step, whereas in a real forest trees live in
rather stable groups which have been shaped by their
present and past interactions. Despite this crude assump-
tion, the overall tree population dynamics were still
reproduced to a high degree. We conclude from this
result that tree frequency distributions are sufficiently
good population descriptors to capture stochastic spatial
variability of a forest. This suggests that the changing
frequency distributions of trees, and not primarily single
tree history including its direct position, determine entire
forest dynamics and it is a positive answer to the question
(Pacala, 1989) ``Can we adequately account for plant
population dynamics without specifying the location of
individuals?'' and an extension of Fulton's (1991) conclu-
sion, that ``much of the information contained in indi-
vidual tree descriptions is redundant if the main concern
is with a dynamically sufficient representation of a forest
patch'' to the entire forest. Urban (1991) has also con-
cluded that for the simulation of implicitly spatial
phenomena space does not always have to be explicitly
taken into account, same as Deutschman et al. (1997),
whose study with the individual based forest model
SORTIE revealed that it is not necessary to include
intrapatch light variability to describe overall forest
dynamics.
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We hypothesise that frequency distributions are a
minimum aggregation level, since other more aggregated
population descriptors which do not take into account
stochastic spatial variability, such as total species means
or means of height classes failed to reproduce the forest
diversity. Although in our model, same as in the patch
model, seed supply is independent of parent trees,
coexistence in this open system can be considered as a
prerequisite for coexistence in the closed system, where
seed supply is coupled to parent tree abundance. If
coexistence is not possible in the open system, it is
unlikely that it will occur in the closed system, since the
positive feedback between parent abundance and recruit-
ment will presumably further decrease the number of
species which can coexist.

Our finding is supported by the comparison of a
spatially explicit forest model with its mean field
approximation, where light supply was averaged over
space (Pacala and Deutschman, 1995). The simulation
with the mean field model yielded half the biomass and
enhanced the extinction of non dominant species. In a
more general frame the hypothesis is consistent with the
ecological evidence and theory of heterogeneity or distur-
bance-mediated coexistence of species (cf. e.g., Denslow,
1985; Hutchinson, 1978).

CONCLUSION

By the derivation of the distribution based, structured
population model DisCForM from the individual based,
stochastic patch model we reached three goals: The new
model is faster and its results are similar to the patch
model simulations, and new insights into forest dynamics
were made possible by the changes.

The stochastic variability in a forest can be depicted
by random tree distributions, which implies that tree
frequency distributions determine forest dynamics and
not primarily single tree histories or positions. However,
distributions seem to be the minimal necessary aggrega-
tion level.

The approach of replacing the stochastic distributions
obtained by Monte Carlo simulations with theoretical
distributions can be applied to all patch models in which
competition for light forms the only interaction between
the individuals. The idea can also be extended to
competition for other local resources, e.g., nutrients or
water, if the supply of them is explicitly modelled. This
approach is promising even for patch models with
competition for several independent local resources.

With the good run-time behaviour of the model, many
new applications of forest models are now possible, e.g.,

simulating tree species migration in past and future
climate changes or forests in large areas on a fine grid.
Moreover, this approach can be considered as a potential
contribution to the development of larger scale dynamic
vegetation models because it helps to ``discover the rules
that permit large-scale ecological models to be derived
from fine-scale interactions'' (Pacala and Deutschman,
1995).

APPENDIX 1: PROCESS RATES OF
DISCFORM

The following process functions of the aggregated
model were derived from ForClim-P (Bugmann, 1994,
1996) (for explanation of parameters refer to Table 3):

v the growth rate #s, i (l )=#s, i, max } Cs } |s, i } gs(l ),
with the light dependence function

gs(l )=g1, s&g2, s } e&1.84 } l&g3, s } e&4.84 } l;

v the light dependent part of the mortality rate

+s, i (l )={0.184,
0,

Cs } gs(l )<Max(0.1, 0.0003�#s, i, max)
else

;

v and the establishment rate

;s(l )={0,
;max, s ,

l<l;crit, s ,
l�l;crit, s .

APPENDIX 2: RUNTIME
COMPARISON

On a SUNserver MP630 (40 MHz) FORSKA, e.g.,
would need approximately TFk=0.42 min. (Fulton,
1991) to simulate np=1 patch over 1200 years. We
assume that applying our distribution based approach to
FORSKA (run with np=200 patches) also reduces the
computing time to about 40. For a hypothetical dis-
tribution based FORSKA model this would lead to a
run-time of 0.04_200_0.42min=3.44min, regardless
the number of patches originally used in FORSKA.
FLAM needs for np patches 0.05_np_TFk min. Hence,
for patch numbers np�3.44�(0.05 } TFk)=164 the dis-
tribution based approach is faster than the Monte Carlo
approach; it needs 180 less computing time for
np=200, which is considered as the minimum necessary
number of replicates in patch model simulations to
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warrant reliable estimates of the expected values of the
species biomasses (Bugmann et al., 1996).
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