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Abstract

Nonlinear temperature dependence plays a major role in a large variety of ecological models. For the sake of simplicity
and efficiency, the temperature dependence functions in many models are calculated for monthly or yearly time intervals,
using temperature means or interpolations between means as input. As a consequence, information about the variability of
the temperature input data is lost, which leads to a bias in the temperature dependence function and to errors in the model
results. We tested the performance of a range of methods against this common approach for calculating temperature
dependence on a larger time scale, i.e. for a temporal aggregation. The methods estimate the expected value of the
dependence function in different ways, using the mean or standard deviation of temperature variables in different temporal
resolutions as input. In our tests we used temperature dependence functions from four different ecological fields; hourly
temperature data sets from various climatically differing sites were used as input. The precision of the tested methods
increased with the resolution of the input data, although computing time increased. The mean errors ranged from less than
1% to about 8% for the aggregation to 1 month and from about 1% to over 30% for the aggregation to 10 years. The most
precise and efficient method is the explicit calculation of the expected value for the dependence function, which is based on
the mean and standard deviation of hourly temperatures. The least precise but most efficient method is the common
application of the dependence function to mean values. The quality of these methods is mainly determined by the quality of
the approximation of the temperature variability. Condensing highly resolved input data into means is only appropriate if
either the dependence functions are linear in the observed temperature range, or low precision but very high computing
efficiency is required. Given a certain requirement on precision or computing efficiency, we are now able to indicate for a
number of input data resolutions the appropriate method to calculate temperature dependence over long time periods. © 1997
Elsevier Science B.V.
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rates depend on temperature 7, can have various,
usually nonlinear shapes, e.g. Gaussian or exponen-
tial. In the following such temperature dependence
functions and their approximations are denominated
by ¢(T). The accumulated effect of temperature, e.g.
on insect maturity or plant phenology, is normally
measured by means of the integral

M(ti):= ['o(T(7))dr (1)

Iy

over a time interval (z,,r). This integral is often
referred to as ‘physiological time’, ‘day-degree-sum’,
or ‘heat-unit-sum’.

Temperature dependence also plays a major role
in many ecological simulation models, ranging from
pest prognosis models, such as BUGOFF2 (Blago
and Dickler, 1990) and APFWICK (Lischke and
Blago, 1990; Lischke, 1992), and crop phenology
models, such as BIOTIME (Kirsta and Tarabrin,
1994), to models examining the sensitivity of ecosys-
tems to a potential climatic change, such as the forest
patch models FORSKA (Prentice et al., 1993), FOR-
CLIM (Fischlin et al., 1995; Bugmann, 1996) and
DisCForM (Lischke et al., 1997a), where physio-
logical time determines the growth and thus competi-
tion and succession of trees.

The precision of the temperature dependence
function can have a crucial influence on the outcome
of such models, depending on the mode! sensitivity
to the temperature dependence function. The most
exact approach is to calculate M(z,1,) (Eq. (1)) by
summing the actual values of the dependence func-
tion using temperature data at high temporal resolu-
tion, which reflect the diurnal and even more fre-
quent temperature fluctuations.

However, due to practical constraints such as the
lack of appropriate input data or long computation
times, in many models a larger time step is chosen,
and temperature dependence is calculated by apply-
ing the temperature dependence function either to
mean temperatures {(e.g. monthly temperature means
as in FORCLIM), or to an interpolated temperature
course (e.g. in FORSKA or in the BIOTIME-model).
Yet, monthly or yearly temperature means or interpo-
lations between means do not contain complete in-
formation about temperature variability in the con-

sidered period, particularly not about the intra-daily
variability. If the dependence function is nonlinear,
which is realistic for many cases, such a simple
approach can lead to a loss of precision in the model
outcome.

One commonly used approach for calculating
temperature dependence over long intervals, i.e. ag-
gregating it, is to replace the nonlinear dependence
function by a linear one. But this approximation
again can lead to a considerable loss of precision (cf.
Blago and Dickler, 1990). On the other hand, empiri-
cal correction functions of the temperature depen-
dence as used by Bugmann (1994) confine the model
application to the regions where those functions have
been estimated.

Thus, there is a need for methods which aggregate
temperature dependence functions over long periods
in a precise and efficient way. A range of methods
for such a temperature dependence aggregation has
been compiled and developed (cf. Lischke et al.,
1997b). The common principle of the methods is that
they estimate the expected value of the temperature
dependence function over the aggregation period.
They take into account the information about tem-
perature variability contained in the available input
data, are applicable for general, i.e. nonlinear tem-
perature dependence functions, and suitable for input
data of different resolution.

In the present paper, we tested the precision and
computing efficiency of these aggregation methods
in four case studies against the commonly used
application of the dependence function to tempera-
ture means (method DA) and to temperatures ap-
proximated by the sine-method of Allen (1976)
(method ALLEN), or to temperatures produced by a
random weather generator (method STOCH). We
assessed in particular, how much the assumptions
and approximations underlying the methods affect
their precision.

The temperature dependence functions used in the
case studies cover different ecological fields and
hierarchical levels. For example, for temperature
driven development, such as insect maturing or plant
growth, we examine the development of the codling
moth (Cydia pomonella). Temperature dependent
timing processes, such as insect diapause (e.g. over-
wintering) or seed vernalisation, are represented by
the chilling requirement of the apple tree bud rest



H. Lischke et al. / Agricultural and Forest Meteorology 86 (1997) 169~181 171

break. Net photosynthesis of trees is an example of separately to assess the influence of the temperature
an aggregated physiological process; net photo- dependence aggregation on interspecific competition.
synthesis rates of several tree species are considered With soil respiration an ecosystem process is consid-
Table 1

Overview of the temperature dependence aggregation methods. They are divided according to the type of method (Explicit expectation value
calculation: Stochastic expectation value calculation or or A, dependence function of average input), the resolution and kind of input data
needed (T, hourly temperature; T,;,.T oo, daily temperature extrema; A, daily temperature amplitude; 7, daily temperature mean; T,
approximated daily terperature mean; g7, monthly mean temperature; iy, monthly mean amplitude), the statistical parameters estimated
from these data ( 11, mean; o, standard deviation) and the approximations used (¢, dependence function; TC, daily temperature course; ND,
normal distribution)

Method Abbrev. Type Temperature input data Approx.
Temporal resolution Variables Stat. param.

Stochastic generation STOCH S hours T Wy, O @

of average dependence

function

Expectation value of EDH E hours T K. O ®

dependence function of TC

hourly temperatures

Expectation value of EDHTI1 E days T W OF ®

dependence function of A=Tp — Tuin A TC

hourly temperatures approximated

by triangle of mean

and amplitude

Expectation value of — T,
dependence function of EDHT2 E days Th=—% HTw TTn ¥
hourly temperatures approximated A=T, — T a0y TC
by triangle based on extrema

= Tmin + Tmax
Sine-sine method of Allen Allen - days Tn= 2 - -
A= Tax — Tin
Expectation value of EDDTI E days T T @
dependence function of A= Toax = Tnin ar TC
daily temperature triangle A ND
based on mean
and amplitude
Expectation value of ~ Toint Toax
de;’endence function of EDDT2 E days Tn= 5 K7 0T, 14
daily temperature triangle A=Tpux — Thoin a0y TC
of extrema ND
Expectation value of EDM E days T LT OF ®
dependence function of
daily temperature mean
Dependence function of DAT A months 7s 1IN JIE N ©
average daily temperature TC
triangle
Dependence function of DA A months WF= Mg U7 ¢

average temperature
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ered, which integrates over space and many different
organisms.

2. Tested methods

The methods tested in this study calculate the
integral of Eq. (1) by the expected value E[ o(T)] of
the dependence function ¢(T) of the hourly tempera-
tures in the aggregation interval (z,z,), multiplied by
its length r — ¢, by

M(t.1):=(r=1) - E[¢(T)]

The methods differ in how the expected value
El¢(T)] is calculated or approximated, particularly
in how the variability of the temperature data is
estimated. Table 1 gives an overview of the different
methods, which are divided using the following cri-
teria.

Three different types of approaches are used to
determine the expected value E[ o(T)]:

1. The expected value is determined stochastically
(type S) by sampling 1000 temperature realisa-
tions from a normal distribution (Monte Carlo
simulation), based on mean and standard devia-
tion of the hourly temperature w, and o, calcu-
lating the temperature dependence of each and
averaging it.

2. The dependence function is applied to the mean
of the regarded input variable(s) (e.g. mean hourly
temperature in method DA or mean daily temper-
ature triangle in method DAT) in the aggregation
period (type A).

3. The expected value of the dependence function ¢
is calculated explicitly (type E), assuming the
temperature variable X to be normally distributed
with the density function p, . For example, in
method EDH the expected value is given by

Ele(D)] = [ o(x)-pr(x)dx

The input data required by the methods are the
statistical parameters mean w, or mean and standard
deviation o of temperature variables, which are
given at hourly, daily, or monthly resolution. As
variables the hourly temperature 7, the daily temper-
ature extremes 7., and 7 ;. the daily temperature

b3 min?*

amplitude A, the daily temperature mean T (either
measured such as in EDHT1, EDDTI, and EDM or
approximated by T, =(T,,, + T,.)/2 such as in
the Allen method, EDHT?2, and EDDT2), the monthly
mean temperature w7, or the monthly mean of the
daily temperature amplitude ., are used.

1. Methods EDH, EDHTI1, and EDHT2 determine
the expected value of the hourly dependence func-
tion based on the mean and standard deviation of
the hourly data. These statistical parameters are
either estimated from the input data in method
EDH, or derived from the means and standard
deviations of the daily temperature mean T or T,
and daily temperature amplitude A (based on the
assumption of a triangle shaped daily temperature

a)
o(T)
T T >
do dq d> d3 da
Temperature T
b)
Temperature T
Tmax
A
Tmin
I 1 —>
tmax 1 daytimet
°) A
Px(X)
Bx(X)
| T 'X
Hx-g Ox Hx Hx+g Ox

Fig. 1. Approximations (hairlines) used in aggregation methods.
(a) Approximation of temperature dependence function (7).
Thick line, exact dependence function; hairline, approximation.
(b) Approximation of daily temperature course T (r). Tpin, T
temperature extremes; /., time when temperature maximum is
reached; A, temperature amplitude. (¢) Approximation of density
function of normal distribution { p {x), thick line) by a parabola
(p(x), hairline). uy, mean; oy, standard deviation of tempera-
ture; g, slope parameter of parabola (g = 2.3 in simulations).
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course (cf. Fig. 1(b)) in methods EDHT1 and
EDHT2).

2. Methods EDDTI, EDDT2, and EDM determine
the expected value of the daily dependence func-
tion »(T,A). The expected value, e.g. of method
EDDTI, is

E[v(T.2)]

- /_1/:1’( v.2)-pr(¥)dypy(2)dz (2)

In method EDM, »(T, A) is obtained by applying the
dependence function to the daily mean temperature
T. In methods EDDT1 and EDDT2, »(T,4) is given
by the integral over the daily course of ¢, which is
obtained by a triangle-shaped approximation of the
daily temperature course, determined by the two
variables temperature mean T or T, and amplitude
A

Some methods rely on assumptions and approxi-
mations, e.g. to calculate the expected values
Elo(T)] and E[»(T.A4)], which is not explicitly
possible for each dependence function ¢(7) or den-
sity function p_. Also, input parameters are approxi-
mated, e.g. temperature mean in EDDT2 and EDHT2,
to handle input data of insufficient resolution.

The random variables daily temperature mean T
and T, and the amplitude A are assumed to be
independent. As approximations we use a piece-wise
linear function for the nonlinear temperature depen-
dence function ¢(7T) (cf. Fig. 1(a)), an asymmetric
triangle 7(r) with the same minimum temperature at
the beginning and end of the day and a variable time
point 7, of the maximum temperature for the daily
temperature course (TC) (cf. Fig. 1(b)), and a
parabola p (cf. Fig. 1(c)) for the density functions
p#(y) and p,(z) of the normal distribution in Eq.
().

We used the approximated dependence function
applied to the hourly temperature values and aver-
aged over each test period as a reference (exact
value) in the case study test. For comparison we
utilised the commonly used methods of applying the
dependence function either to the mean temperature,
i.e. method DA, or to hourly temperatures obtained
by a sine-wave approximation of the daily tempera-
ture course (Allen, 1976) (without empirical correc-

tion) as well as the stochastic temperature generator
STOCH.

3. Case study tests

To test the precision and computing efficiency of
the seven new aggregation methods and three com-
parison methods DA, STOCH, and Allen, four case
study tests with the following temperature dependent
processes from different ecological fields were car-
ried out:

1. soil respiration (cf. Fig. 2(a)), modelled with the
function used in Parton et al. (1993);

2. bud rest break (cf. Fig. 2(b)) of apple trees, as
modelled by Del Real-Laborde et al. (1990);

3. tree net photosynthesis (cf. Fig. 2(c)) of the tree
species Pinus cembra, Picea abies, Abies alba,
Larix decidua, Betula pendula, and Fagus silvat-
ica, parameterised with the cardinal temperature
values documented in Pisek et al. (1969) (cf.
Table 2);

4. development of the larval and pupal stages of the
codling moth (Cvdia pomonella L. (Lepidoptera,
Tortricidae)) with the temperature dependence
function from Lischke and Blago (1990) (cf. Fig.
2(d)).

For the soil respiration case study an 8-month
time series (data provided by Richner, 1994) of
hourly soil temperatures at 10 cm depth under grass
was used as input. For case studies 2, 3 and 4, 11
years of hourly air temperature from six climatically
differing sites (ranging from dry temperate to boreal
climate) in the European Alps served as input data.
For the bud rest break study, only temperature data
of the winter months (October—April) were included
in the analysis.

We calculated the monthly expected values of the
dependence functions, i.e. aggregated them from an
hourly to a monthly time step in case studies 1, 2 and
3. We also determined the mean values of the differ-
ent estimators for temperature mean and variability
used in the examined methods.

To explore the influence of the aggregation period
length, we used the codling moth development as
example and determined the 2-, 3- and 6-monthly,
yearly, and 10-yearly expected values. Considering
codling moth development over such long time peri-
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ods can give information about the potential number
of codling moth generations per year. We also deter-
mined the mean values of the different estimators for
temperature mean and variability used in the exam-
ined methods.

Precision and computing efficiency of all methods
were determined for each aggregation period P, at
each test site. The precision, i.e. the error due to the
aggregation, was measured as difference between
exact expected value of temperature dependence and
the value obtained by the aggregation methods, in
percent of the average exact value. The computing
efficiency £ of the methods is given in percent
computing time At ., of the run-time needed to
calculate the exact value, which is given by the P,
fold of the time needed for 1 day

Table 2

Parameter values (°C) of the temperature dependence function for
tree photosynthesis (Pisek et al., 1969)

SpCCiCS Tmin TgOmin 721[:! Tgomax Tmax
Abies alba —3.5 8 15 22 38
Picea abies —4 11 14 19 37
Pinus cembra —-55 9 125 185 36
Larix decidua -3 11 165 21 38
Betula pendula -3 12 17 21 42
Fagus silvatica —65 13 18 23 43

The time for calculation of the statistical parame-
ters of the data was not included in this measure-
ment.

All methods except the Allen method need only

100 - Atppoa 100+ Aty one evaluation r.egardless of the aggregation pepod
= —7; =5 length. The ratio Afpepoa/Aleyacraay ©Of the time
exact a Texact day required for this single evaluation to the time re-
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Fig. 2. Temperature dependence functions of the processes tested in the case studies. Dotted line or separate points, dependence function;
solid line, approximation; black squares, discretisation points of approximation. (a) Soil respiration. {(b) Apple tree bud rest break. {c) Tree
net photosynthesis {for species specific parameter values see Table 2). {(d) Codling moth larval and pupal development.
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quired for the exact evaluation for 1 day can then be
determined by

Atmethod _ ¢ P,
At 100

exact,day

This ratio also yields the critical aggregation pe-
riod length P, ., above which the tested methods
starts to be faster than the exact evaluation.

175

The performance tests were implemented in the
programming language Modula-2 using the program
library of the Dialog-Machine V2.2 (Fischlin, 1991)
and run on a SUN SPARCserverl0 with the batch
environment RASS V1.1 (Thény et al., 1994). Ana-
lytical examinations of the functions were performed
with the help of the symbolic calculation software
MATHEMATICA.

a) 1.25 - b) 25
1 4 - 20 4 L
g 75 i g 15: -
g .5 - £
ag 25 [ ,|_ l i ‘ag 10 4 L 1 -
50 3 z . T T 5o 57 dn
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©) 16 ~
5 121 1T 1L
i 0] I
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o ' ﬁﬁi}ﬁ%i?
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Fig. 3. Aggregation errors: differences between temperature dependence mean calculated with measured temperatures (exact) and expected
values calculated with studied methods. The differences are expressed as a percentage of the exact temperature dependence averaged over
all years and sites. Means and standard deviations of the difference distributions are given as point symbols and bars. Dependence functions

of: (a) soil respiration; (b) apple bud rest break; (c) tree net photosynthesis (tree species:

«, Abies alba; O, Betula pendula; a, Fagus

silvatica; v, Larix decidua; B, Picea abies; », Pinus cembra); (d) codling moth development. Aggregation periods were 1 month in (a),
(b) and (¢); in (d) W, 1 month; <, 2 months; ¥, 3 months; A, 6 months, +, 1 year; X, 10 years.
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4. Results

Fig. 3(a)-(c) show the errors of the different
approaches for the aggregation to 1 month in three
case studies. For the soil respiration case study the
errors are very small, below 0.5%. In contrast to this,
the aggregation errors in the case studies for apple
tree bud rest break and tree net photosynthesis reach
up to 30% for method DA, with the mean values
ranging from below 1% for method EDH to 12% for
method DA. The absolute mean errors and the error
variability increase from EDH to DA, as do the
differences of the errors between the tree species in
the tree net photosynthesis study. Some methods
calculate the expected value by including informa-
tion about the daily temperature variability, by using
either the temperature variance as EDH and STOCH,
or the temperature amplitude as EDHT1, EDHT2,
EDDT1, and EDDT2. These methods are of a similar

or higher precision as the sine-wave-approximation
of Allen (1976), which also uses the temperature
amplitude as input.

In Fig. 3(d) (codling moth case study) the errors
for the aggregation to various periods are compared.
For the 1 month aggregation the results are similar to
those of case studies 2 and 3. As the period length
increases, in methods DA and DAT the absolute
mean errors increase up to 30%, whereas in the other
methods it remains constant. Fig. 4 shows for the
same case study the computation time of the differ-
ent methods measured in percent of the time needed
for the exact calculation. The computation time was
plotted against the mean percentage aggregation er-
TOT.

Fig. 5 qualitatively summarises the relationship
between precision, computing efficiency, aggrega-
tion period length and input data resolution. The
general trend is that precision increases with the

Precision

300 + -
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Fig. 4. Efficiency measured as computing time vs. precision measured as mean aggregation error (see also legend to Fig. 3). The small
numbers near the symbols refer to the length of the aggregation period. The dotted rectangle zooms into the region near (0,0).
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k Exact
4 EDH
® . och — 3
£DDT1 EDHT! iy
EDHT2
EDDT2: ;
Allen =l
2 E DM s -
c
k=l
]
g DAT
I : DA
Computing effficiency T

Fig. 5. Qualitative scheme of the precision of the aggregation
methods depending on input data resolution, computing efficiency
and aggregation interval. The arrows symbolise the aggregation
interval lengths, with 1 month at the beginning and 10 years at the
end of the arrow. The input data resolution is represented by the
grey scale of the arrows, which ranges from black for the hourly
input data to very light grey for the monthly mean input.

information contained in the input data. At the same

time computing efficiency decreases. In Figs. 4 and

5 we can distinguish between three groups of meth-

ods.

1. Methods EDH, EDHT1, EDHT?2, Allen, and EDM
combine high precision (error less than 5.5%)
with high computing efficiency (from below 1%
to 30% of the exact computation) for all tested
aggregation periods. The use of the Allen method
pays off for all aggregation periods longer than 1
day, the use of the other four methods for aggre-
gation periods longer than 10 days.

2. Methods EDDT1, EDDT2, and STOCH have
mainly the same precision as group (1), but 9, 9,
and 5 times longer computing times, respectively.
This means that these methods start to pay off at
aggregation periods of 90, 90, and 50 days, re-
spectively.

3. Methods DA and DAT are the most efficient (less
than 1% for all aggregation periods, always faster
than exact calculation), but least precise methods.
Their precision decreases with the aggregation
error increasing from over 8% to 30% with the
aggregation period length.

To examine the differences in the outcome of the
various methods we studied how the results depend
on the mean monthly temperatures. Fig. 6 shows the
deviations of method DA in the codling moth and

photosynthesis study (Abies alba, aggregation pe-
riod 1 month) vs. temperature means. The highest
absolute errors are found close to the grid points of
the approximated dependence functions, e.g. at 4°C
and 15°C for the codling moth study and at —3.5°C,
8°C and 15°C for the photosynthesis study. This
pattern was also found for the other methods except
for ALLEN and STOCH, though not so clearly. All
methods underestimate the true expected value of the
dependence function when the dependence function
is concave, and overestimate it when the function is
convex. The error increases with the angle between
the two linear parts of the approximated dependence
function. The absolute errors increase also with in-
creasing standard deviation for the same temperature
mean.

The tested methods include various assumptions
about the distribution of the temperature data (Fig. 7)
and estimate the parameters of these distributions in
different ways.

The temperature data could not be considered to
be strictly normally distributed in more than 12% of
all tested months (chi-square test (Sachs, 1984),
a=0.05).

We determined the mean differences of the esti-
mators of temperature mean and standard deviation
to the measured temperature means and standard
deviations (Table 3). The temperature distributions,
which are defined by these variability and mean
estimators, are shown in Fig. 7. Most methods devi-
ate only slightly from the normal distribution with
measured mean and standard deviation (bold line). In
methods EDDT2 and EDDH2 the mean temperatures
are slightly overestimated (Table 3, Fig. 7), because

Aggregation error of method DA

(% of exact value)

-5 -10 -5 o 5 10 15 20 25
Temperature mean {'C)

Fig. 6. Aggregation error (see also legend to Fig. 3) vs. mean
temperature. Large dots, codling moth development; small dots,
net photosynthesis of Abies alba.
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DA

DAT

EDDT2
EDDT1
EDHT2
EDHT1

EDM
EDH,STOCH

-5 0 5

10

20

T(C)

Fig. 7. Temperature distributions assumed in the tested methods, based on approximations of distribution type and on mean values of

temperature mean and variability estimates (Table 3).

they are based on a daily mean estimated from the
daily extremes. Methods DA, DAT, and EDM show
larger deviations. For DAT this is partly due to the
uniform distribution of temperature which is implic-
itly assumed by the average daily temperature trian-
gle used in this method. Furthermore, DA does not
take into account variability at all and methods DAT
and EDM use either only intra-daily or inter-daily
variability. This leads to an underestimation of the
temperature variability. Inter-daily temperature vari-
ability as measured by the standard deviation o7 of
the daily mean T increases from 1 to 6 months
aggregation period length. Intra-daily variability as
measured by the average daily standard deviation o
remains constant (Table 4). This is reflected by the
mean differences between the two variabilities and

Table 3

also by the differences in the outcome of methods
EDM and DAT (Fig. 3(d)).

The relations between precision of the methods
and variability estimation can be explained by con-
sidering the expected value of a dependence function
¢(T) which consists of two linear parts (e.g. the
second and third part in Fig. 2(d), with 7, =15 and
¢, =0.25). These linear parts are separated by the
grid point (7,,¢,). The dependence function can be
expressed by

¢+ta-(T—T)
o+ (a+d)-(T-T)

forT<T,

T =
o(T) forT>T,

where a is the slope of the first, and (a + d) the
slope of the second linear part; the difference d of

Average deviation of estimators of temperature variability from measured temperature standard deviation (estimated — exact)

Method Assumed distribution Deviations of estimators (°C)
Hr Or
DA None 0 No variability considered
DAT Rectangle distribution between T,;, and T, 0 A/2=002
EDM Normal distribution 0 —1.59
EDHT1 Normal distribution 0 -0.30
EDHT2 Normal distribution 0.46 -0.19
EDDTI1 Normal distribution approximated by parabola 0 —-0.30
EDDT2 Normal distribution approximated by parabola 0.46 -0.19
EDH Normal distribution 0 0
STOCH Normal distribution 0 0
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Table 4
Differences between inter-daily variability (o7) and intra-daily
variability over all sites, years and aggregation periods 1-6 months

Aggr. oy oF Or— oF
period

Mean (°C) SD (°C) Mean (°C) SD(°C) Mean (°C)

1 3.36 0.99 3.05 0.99 0.31
2 3.40 0.90 3.60 0.96 -0.20
3 3.41 0.87 431 1.05 -0.90
6 3.44 0.71 7.21 0.91 -3.77

the two slopes is a measure for the angle between the
linear parts, i.e. for the curvature. If it is positive, the
dependence function is concave, if it is negative the
function is convex. The expected value of @(T) is

Ele(D)] = [

o(T) - pr(T)dT
= o(T) +af" (T=T) pr(T)aT
+(a+d) [ (T=T) py(T)dT

=¢(T)+af (T-T) py(T)dT &

+af (T—T)) - py(T)dT
T,
—@(T) +a-(pr—T)

+af (T=T) py(T)AT

#(o)

with the density function p,(T) of the normal distri-
bution. The empirical results of the case studies
suggest that the calculated expected values decrease
with decreasing variability. In Eq. (3), variability is
contained only as standard deviation o of the distri-
bution density function p(T) in the integral ¢(o ).
The solution of this integral is (u: mean of the

temperature distribution; erf: error function (Bron-
stein et al., 1995))

é o[ (T-T) e g
o) = -T) - iy T
( ) le( z) ‘[27"_?6 202
0 _(T—u)2
=—| —0o-e e
V2w 7 2
(T—p)

f (p—T)-erf N .
=F(\/F (u—T)+o-e (T—z&;)‘z
‘/7 (a-T)- erf(("/_—_#)
(\/7 (p—T)- (l—erf((‘/:_u)

(T,— p)?
+o-e a7

The derivative of ¢(o ) with respect to o is
d¢(o) 3 Teow?
= —¢ o2
do V2 :

This derivative, describing the change of ¢(o)
and therefore of the expected value with respect to
o, depends on the sign and value of curvature
parameter d, on the distance between temperature
mean u and grid point 7, and on o. If o is
estimated too small and the dependence function is
concave, i.e. d positive, the expected value is under-
estimated. This effect increases when mean u ap-
proaches grid point T;, such as also found in the
empirical studies. Equivalently, the expected value is
overestimated if the dependence function is convex,
i.e. d negative.

|

5. Discussion and conclusions

In this study a range of approaches for aggregat-
ing temperature dependence functions to longer time
periods, i.e. to determine long term expected values
of dependence functions, was tested. The aim was to
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understand the behaviour of the methods and to
assess the suitability of the methods for a variety of
input data resolutions, given precision and comput-
ing efficiency requirements.

The quality of the methods depends on (1) the
estimation of the temperature distribution and (2) the
approximation of the dependence function with
piece-wise linear functions. Since the latter can be
improved by an adequate choice of grid points we
focused on the first aspect.

Generally, the precision of the methods reflects
the precision of the variability estimation. In all
presented methods variability is underestimated.
Method DA, which does not incorporate information
about variability at all, has the largest bias, followed
by methods DAT and EDM, which assess only intra-
and inter-daily variability. The other methods, which
estimate variability of hourly temperatures in various
ways, show smaller deviations.

The bias of the methods increases when the mean
temperatures approach the grid points of the depen-
dence function. Hence, errors are small when the
temperatures in the aggregation period remain mostly
in one linear part of the approximated dependence
function (such as in the case study of soil respira-
tion). Also the curvature of the dependence function
influences the deviation of the expected value. If the
variability is underestimated, the calculated expected
value is lower than the real one for concave func-
tions (e.g. codling moth development), and higher
for convex functions (e.g. tree photosynthests).

Most of the tested methods assume that the tem-
perature data are normally distributed, which is not
the case for the majority of the examined months.
The method STOCH with normality as the only
underlying assumption exhibits only a small bias,
which indicates that the expected value of the depen-
dence function is robust to departures from normal-
ity. Approximating the normal distribution by a
parabola as in EDDT1 and EDDT2 underestimates
slightly the expected value of the dependence func-
tion as can be seen by comparing the results of
EDDT1 with EDHT1 and EDDT2 with EDHT2.

The most appropriate method for a specific model
can be chosen from Figs. 4 and 5, depending on the
availability of input data (cf. Table 1), on the relative
importance of precision and computing efficiency,
and on the required aggregation period.

When temperature data at hourly resolution are
available, the dependence function can be estimated
accurately with EDH, if computing time is limiting
and the aggregation period is longer than about 10
days. Otherwise it can also be calculated exactly.
The stochastic temperature generator STOCH is as
precise as method EDH, but less efficient. If daily
mean temperatures and extremes are available,
EDHT!1 is the best choice. If only daily extremes are
obtainable and the aggregation period is longer than
3 months, EDHT2, for shorter aggregation periods
the Allen method has the best performance. EDM is
the only usable method if just the daily temperature
means are available. Finally, if only aggregation
period means of daily temperature mean and ampli-
tude are obtainable, method DAT is the only possible
choice; if only the overall temperature mean is avail-
able, the commonly used method DA has to be
applied.

Method DA yields the largest mean bias of all
methods, namely 8% of the exact value for the
aggregation to one month and 30% for the aggrega-
tion to 10 years. Such an error can influence strongly
the outcome of a model. For instance, a bias of 8%
in the codling moth developmental rate with the
parameter values from Lischke (1992) would corre-
spond to 0.2 less codling moth generations per year,
a bias of 30% to 0.8 less generations. This is an
intolerable inaccuracy, e.g. in a pest prognosis model.
The large error variability connected with this high
mean error renders the method even less reliable.

For the case of highly resolved input data, the
results suggest that one can optimise precision and
efficiency by the appropriate choice of the aggrega-
tion method and through this by the aggregation
level of the input data. This allows the use of as
much information from the input data as available,
provided precision and not computing time is limit-
ing or the computing efficiency of several methods is
similar, such as for EDH, EDHT1, EDHT2, Allen,
and EDM. In cases of low precision or very high
computing efficiency requirements and also for
mostly linear dependence functions, a condensation
of the input data into means and mean amplitudes
and the application of method DAT or DA is reason-
able. Finally, a good compromise between precision
and computing efficiency requirements for high in-
put data resolution is method EDH.
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