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Abstract

Rates of ecological processes are usually influenced by temperature. For simplicity and efficiency of ecosystem
models it is often necessary to summarize information about temperature dependence from short, e.g. hourly, time
intervals over longer, e.g. monthly, time periods, i.e. to calculate long term expected values of dependence functions.
This aim can seldom be achieved by applying the temperature function to the mean temperature, because temperature
dependencies are in many cases nonlinear. Therefore, we derived seven new, general methods for a temporal
aggregation of temperature dependence. The methods determine the expected value interpreting either hourly
temperature, daily temperature mean, or daily temperature mean and amplitude as random variables. The dependence
function is approximated by a piecewise linear function. Some methods use a triangle as approximation for the daily
temperature course, some a parabola as approximation for the density function of the normal distribution. The
resulting methods cover a range of temperature data resolutions: monthly mean and standard deviation of hourly
temperatures; daily temperature extrema; daily temperature means; and amplitudes, or daily temperature means
alone. The methods can be applied to all types of dependence functions, in particular to nonlinear ones. © 1997
Elsevier Science B.V.
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1. Introduction

Many biologically or ecologically relevant processes are temperature dependent. Such as the growth and
development of poikilothennic organisms, e.g. of insects or plants, or the processes used to synchronize
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an organism's life-cycle to seasonally changing environmental conditions, such as insect diapause,
seed vernalization or timing of tree bud rest break. The functions dep(T) by which these processes
depend on temperature T are usually nonlinear, e.g. exponential or with an optimum shape. Cumu
lative effects of temperature on such biological processes can be measured by means of the integral

M{t, to):= ft dep(T(r)dr
DeL

to
(1.0.1)

over a time interval (to, t). This integral is often referred to as 'physiological time', 'day-degree-sum',
or 'heat-unit-sum'.

Temperature dependence plays also a major role in many ecological simulation models, ranging
from pest prognosis models, such as Bugoff2 (Blago and Dickler, 1990) and ApfWick (Lischke and
Blago, 1990; Lischke, 1992), to crop phenology models such as Biotime (Kirsta and Tarabrin, 1994),
to models examining the sensitivity of ecosystems to a potential climatic change, as in the forest
succession models Forska (Prentice et aI., 1993), ForClim (Bugmann, 1994; Fischlin et aI., 1994),
and DisCForM (Lischke et aI., 1996a), where physiological time determines the growth and thus,
the competition of individual trees. An imprecise formulation of the temperature dependence func
tion can seriously influence the outcome of such models, depending on the model sensitivity to the
temperature dependence function. For example, a 10% error of the temperature dependence of
codling moth development leads to an error of about 7 days in the simulations with a pest progno
sis model (Lischke, 1992) in Central Europe. Depending on the application, such an error might not
be tolerable.

The most exact approach is to calculate M(t, to) by summing the actual values of the dependence
function using temperature data in high temporal resolution, which reflect the diel or even higher
frequency temperature fluctuations.

However, due to practical constraints like the lack of appropriate input data, long computation
time, or the desire to keep a model as simple as possible, a larger time step is chosen in many
models and temperature dependence is calculated by applying the temperature dependence function
either to the mean temperatures, (e.g. monthly temperature means in ForClim) or to an interpolated
temperature course (e.g. in Forska or the Biotime-model).

Yet, monthly or yearly temperature means or interpolations between means do not contain all
information about the temperature variability in the studied period, particularly not about the diel
variation. If the dependence function is nonlinear, which is the case for many processes, such a
simple approach can lead to a loss of precision in the model outcome.

To overcome this conflict between required precision and manageability, methods are necessary to
calculate physiological time as precisely as needed using as much information from the available
input data as possible. The methods should be able to aggregate the temperature dependence func
tion from the small time scale of the input data (e.g. days) to a larger time scale (e.g. years) and
summarize the information about temperature dependence from short time intervals over longer pe
riods.

Three kinds of approaches exist to deal with this problem, but rare are ideal.
(1) A possibility is to approximate the nonlinear dependence function using a linear one with a

lower and an upper threshold, and to sum the daily values of this approximation as in Bugoff2 or
by calculating its expected value (Aceituno, 1979). However, the use of such a linearly and
monotonically increasing approximation instead of the original dependence function or a better
matching nonlinear approximation as e.g. the sigmoid function proposed in (Stinner et aI., 1974) or
the biophysical models presented by Sharpe and DeMichele (1977) and Wagner et al. (1984) can
lead to considerable loss of precision (Blago and Dickler, 1990).
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(2) Other approaches apply the dependence function to an estimated daily temperature course, which
has been approximated by models such as the triangulation method of Lindsey and Newman (1956), the
single sine method by Baskerville and Emin (1969), the sine-sine-method of (Allen, 1976), or the
sine-exponential method of Parton and Logan (1981). However, tests of some of these methods by
Worner (1988) did not show a satisfactory precision for all tested sites. Moreover, if it is nonlinear, the
temperature dependence function can not be evaluated in one step for each day but has to be applied to
hourly values of the approximated temperature course, so that no computing time is saved compared with
the use of the original hourly input data. The computational costs for solving the integral M(t, to) over
one day can only be reduced for uncomplicated, e.g. linear dependence functions as in Bugoff2.

(3) Empirical correction functions of the temperature dependence as used by Allen (1976) or Bugmann
(1994) work, but confine the model application to the regions where those functions have been estimated.

Summarized, the above listed approaches are either restricted to a special, often linear type of
dependence function, to a certain length of the aggregation period, or to a certain kind of input data, even
if more detailed information about the temperature course in the aggregation interval is available. Or they
have to be combined with empirical correction terms to yield satisfying results.

The aims of this paper are to derive several approaches for temperature dependence aggregation, which
are (1) applicable for general, i.e. nonlinear temperature dependence functions; (2) for temperature input
data of different resolutions; (3) which are able to use as much information as possible in the available
temperature input data and (4) to work with arbitrarily large time steps, ranging from days to decades;
and (5) which are generally formulated and therefore extendible to other fields of dependence functions.

2. Derivation of methods

2.1. Principles

In this section the approximation principles of the methods are described. The same general idea
underlies all described approaches. If with a certain temperature x, PT,aclx) is the relative frequency in the
aggregation interval (t, to), e.g. I month, then the physiological time M(t, to) (1.0.1) can be expressed by
the integral over the dependence function of x multiplied with its absolute frequency by

M(t, to):= it dep(T(r» dr = (t - to) fc£ PTaclx)dep(x) dx = (t - to)E[dep(T)].
Def. '

to ~ L

Thereby E[dep(T)] is the expected value of the temperature dependence function dep(T). The problem
is to find a reliable estimator for E[dep(T)] in (to, t), given the mean value and standard deviation or only
the mean value of temperature or related variables, e.g. temperature extrema.

Here we derive seven methods for the estimation of E[dep(T)]. The symbols are explained in Table I.
For the mnenomic abbreviations of the methods see Table 2. The approximations used for the estimation
and the exact algorithms are given in Section 2.2 and in the Appendix A, respectively. For sake of
simplicity we consider the aggregation from an hourly to a monthly time interval, but the methods can
also be applied for other aggregations from all time intervals of less than I day to larger ones, e.g. I year
or decade.

2.1.1. Methods using the hourly temperature as random variable
We describe two approaches, abbreviated as DA and EDH, respectively, which regard the hourly

temperature as a normally distributed random variable with the density function PT(X). In the widely used
approach DA, the expected value is approximated by applying the dependence function directly to the
mean temperature value !iT in the regarded period, i.e.
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E[dep(T)] ~ dep(J1T)
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(2.1.1 )

In approach EOH the expected value E[dep(T)] of the hourly values of the temperature dependence is
calculated explicitly by

T N( ) ()
exp[ - (x - J1Tf/2G"}]

~ J1T' G"T =>PT X = h
G"Ty 2n

E[dep(T)] = f~x; dep(x)PT(x) dx

(2.1.2)

(2.1.3)

2.1.2. Methods using daily temperature mean, amplitude, and extrema as random variables
If there is no hourly input data, but data about the daily temperature means, amplitudes, or extrema

available, then the following six methods EOHTl, EOHT2, EOM, OAT, EOOTl and EOOT2 can be
used.

Methods approximating the statistical parameters of hourly temperatures.
(1) Approach EOHTl applies the same algorithm as EOH, but estimates the mean J1T and standard

deviation G"T (Eg. (A.2.3» of the hourly temperatures from the means J1j', J11>. and standard deviations G"t,
G"1>. of the daily mean t and amplitude d.

(2) Approach EOHT2 corresponds to EOHTl, with the difference of calculating the daily temperature
mean t and amplitude d from the daily extrema by t ~ t m = (TnUn + Tmax)j2 and d = Tmax - Tmin'

Table I
Symbols

Symbol

I

T(t)
f(t)
t
Tmin

Tmax

tmax.

~

dep(T)
dep(T)
depi(T)
di

di + 1

E[X]

Px
Px
Ilx
(Jx

(nl Pm
~, -1
DEP

DEPi"" (k1, k 2, t,
M

(J.I (k j , k2)eCD

Meaning

Time
Temperature at time I

Approximation of temperature at time I

Daily temperature mean
Daily minimum temperature
Daily maximum temperature
Time of daily maximum temperature
Daily temperature amplitude
Temperature dependence function
Approximation of temperature dependence function
ith linear part of approximation for temperature dependence function
Grid point for discretization of dep(T),
lower temperature threshold of depi(T)
Upper temperature threshold of depi(T)
Expected value of random variable X
Probability density function of random variable X
Approximation of probability density function
Mean of random variable X
Standard deviation of random variable X
Coefficients of Pr(y) and Pt>,(z) in polynomial form
Boundaries of interval where Px(x) i' 0, X = t, ~

Daily temperature dependence function integral
Daily integral over ith linear part of approximation of temperature dependence function

Coefficients of DEPi ." (k" k2 , t, ~) in polynomial form

Unit

Days
°C
°C
°C
°C
°C
Day
°C

°C
°C
Same as X

Same as X
Same as X

°C



Table 2
Overview over temperature dependence aggregation methods

t, fit, (it,

L\ = Tmax - Tmin /1", (j"

t, /11" (j l'

1\ = Tmax - Tmin /1", (j"

t m = /1 i'm' (ji'm
(Tmax + Tmin)/2 /1", (j"

A = Tmax - Tmin

t,u= fLtm , (frill

(Tmax + Tmin)/2 /1", (j"
A = Tmax - Tmin

t /11" (j"

/1i', /1" /1i" /1"

/1't = liT Iii'

Expected value dependence function of EDH Hours
hourly temperatures

Expected value of dependence function of EDHTI Days
hourly temperatures approx. by trian-
gle based on mean and amplitude

Expected value of dependence function of EDDTI Days
hourly temperature approx. by triangle
based on mean and amplitude

Expected value of dependence function of EDHT2 Days
hourly temperatures approx. by trian-
gle based on extrema

Expected value of dependence function of EDDT2 Days
daily temperature triangle based on
extrema

Expected value of dependence function of EDM Days
daily temperature mean

Dependence function of average daily DAT Months
temperature triangle

Dependence function of average tempera- DA Months
ture

Method Abbr. Input data

Time resolution Variables

T

Statistical
parameters

/1n (j"

Algorithm

Exact formula Approximation Approx.
formula

2.1.3 dep A.1.2
~
t'-<

2.1.3 dep; A.I.2,
0;'

";:,-
TC A.2.3

..,..
"
~
l:l

2.1.7 dep, A.3.l2 :-
",

TC, ~cc-
""2.1.3 dep, A.1.2, r:;'
!l..

TC A.2.3
~
!}

2.1.7 dep; A.3.l2
:::::s·

TC; ""'G
ND 00

:::
2.1.4 dep A.1.2 :;g

.;;;;>

2.1.6 dep; A.3.9 ~
I

TC 8
2.1.1 dep 2.1.1

Expected are divided according to the type of method (explicit Methods value calculation or dependence function of average input), the resolution and kind of the
needed input data: T, hourly temperature; TmaX' Tmin' daily temperature extrema; A, daily temperature amplitude; t, daily temperature mean; t m' approximated daily
temperature mean; /1i', monthly mean temperature; and (j, monthly mean amplitude, the statistical parameters estimated from these data: /1, mean; and (j, standard
deviation, and the approximations used: dep, dependence function; TC, daily temperature course; and ND, normal distribution.
References to the formulae are given in columns 'exact formula' and 'approx. formula'. Method DA is a commonly used approach.

o
\0
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(3) In approach EDM the expected value is calculated explicitly as in EDH, but with the daily mean
temperature T as random variable, which corresponds to the assumption that hourly and daily mean
temperatures have a similar variance.

T- N( _ _) _(y) _ exp[ - (y - ,utf/20"}.]
- ,uT' O"T =>PT -

O"t..{hr

E[dep(T)] = f~00 dep(y)pt(y) dy. (2.1.4)

Methods approximating the daily temperature dependence function. In a first step the temperature course
T(t) for each day is approximated by a function T(t, T, ~) (Eq. (2.2.2)) of time, daily average temperature
T, and daily temperature amplitude ~. Then the daily integral DEP(T, ~) of the temperature dependence
function dep(T) applied to this approximated temperature course T(t, T, A) is evaluated (Eqs. (A.3.6) and
(A.3.7)) by

DEP(T, A):= r1

dep(T(r, T, ~)) dr ~ r1

dep(T(r)) dr
D~1 1 (2.1.5)

for each day normalized to the interval (0, 1) of the period (to, t). In a second step the expected value
E[DEP(T, A)] of DEP(T, ~) for all days in (to, t) is determined.

(1) Approach DAT approximates E[DEP(T, ~)) by applying DEP to the average daily temperature
course, which is characterized by the average daily temperature mean ,ut and the average daily
temperature amplitude ,utJ" i.e.

E[DEP(T, ~)] ~ DEP(,ut, ,utJ,). (2.1.6)

(2) In approach EDDTl the expected value of DEP(T, ~) is calculated, regarding daily temperature
mean T and amplitude ~ as independently normally distributed random variables with means ,ut and PtJ"
standard deviations 0" t and 0" tJ" and density functions Pt(Y) and p tJ,(z), which are defined analogously to
Eq. (2.1.2). The expected value E[DEP(T, ~)] is defined by

E[DEP(T, ~)] = f~'lC f~ 'lC DEP(y, z)P't(y) dy PtJ,(z) dz. (2.1.7)

(3) Approach EDDT2 corresponds to EDDTl, except that the daily temperature mean T is calculated
by T~ Tm=(Tmin + Tmax)/2.

2.2. Approximations

In this section the approximations underlying all derived methods are described. The integrals in Eqs.
(2.1.3), (2.1.4), and (2.1. 7) are of the type Se - (x - a)y(x) dx. These integrals can be solved explicitly only,
for specific, comparably simple dependence functions dep, such as in the following example.

Example 2.1. The solution of (Eq. (2.1.3)) for the exponential temperature dependence function.
depQ (T) = eIXT, a = Ln(QIO)/lO, where QIO is the ratio between dependence function values at tempera-

10

tures T + lOoC and T, can be directly evaluated from Eq. (2.1.3) as
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a) Approximation of temperature dependence function
dep(T)

J"~"_
dO dl d2 d3 d4

Temperature T

b) Approximation of daily temperature course
Temperature T

Tmax

Tmin

111

o tmax daytime t

c) Approximation of normal distribution density function
Frequency

-1

0.1

.....---Px(X)

Fig. I. Approximations used in the aggregation methods: (a) approximation of the temperature dependence function by a piecewise
linear function, defined by a set of grid points d, and the corresponding values of the dependence function; (b) approximation of the
daily temperature course using a triangle between Tmin and Tmax . The maximum temperature is reached at time tmax; and (c)
approximation of the density function p x(x) of the normal distribution by the parabola px(x), X = t, .1. (px and (J x are mean and
standard deviation of X).

To avoid restriction to specific dependence function types and to obtain solutions for any function dep,
we introduce the approximations (Fig. I(a-c)):
• The temperature dependence function dep(T) is approximated by a piecewise linear function dep(T),

which consists of the linear pieces dep;(T), i = 0, ... , nd - I defined by the nd grid points ~.
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{

dep(d; + 1) - dep(d;)
dePiCT) = dep(d;) + (T - d;) d

i
+1- d; ,d; s T < d;+ 1

~ ~~

(2.2.1)

In Fig. la an approximation with four linear parts is shown. The optimal grid points can be obtained
by minimizing numerically the area between dep(T) and dep(T) .

• The daily temperature course is approximated by an asymmetric triangle t(t) (Fig. 1b) with the same
minimum temperature at the beginning and end of the day and a variable time point tmax of the
maximum temperature.

- Ll - Ll
Tmin = T-"2; Tmax = T+"2;

t(t)=

- Ll Ll
T--+t-, Ost<t max

2 t max

- Ll Ll
T - -2 + (l - t) , t max 5, t < 1

1 - t max

(2.2.2)

• The normal distribution density functions P-t(Y) and p/),(z) in Eq. (2.1.7) are each approximated by a
polynomial p of second order which is set to zero for values x, y < °(in Fig. lc: x < Ilx- gax and
x> Ilx+ gax, X = t, Ll). The parameter g determines the width and height of the parabola. In Fig. lc
the approximation for g = 2.3 is shown.

{

3 ((g)2 (y - 11 X)2)
Px(y)= g3ax 2 2ax '

0, , else

(2.2.3)

with X = t, Ll.
With these approximations we get (piecewise) polynomials for all functions in the integrals (Eq. (2.1.3)),

(Eq. (2.1.4)), and (Eq. (2.1.7»). The so replaced integrals can be solved analytically with the help of
symbolic calculation software as, e.g. Mathematica or Maple.

2.3. Algorithms and implementation

The algorithms of the new approaches (EDH, EDM, EDHTl, EDHT2, DAT, EDDTl, and EDDT2),
which are based on the principles of Section 2.1 and the approximations of Section 2.2, are derived in
detail in the appendix. Table 2 gives an overview of the methods, their temporal resolution, input data
needs, cross references to the equations and any approximations used. The methods have been imple
mented on SUN and Macintosh in Modula-2. The source codes can be obtained by anonymous ftp from:

ftp.ito.umnw.ethz.ch/pub/mac/EofTempDep

3. Discussion

In this paper a range of new approaches for aggregating temperature dependence functions to longer
time periods have been derived. The methods are constructed for a variety of input data resolutions and
allow the inclusion of temporal temperature variability in ecological models. Thus, an appropriate method
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now can be chosen from this set (Table 2), depending on the available input data, the needed aggregation
period, and the necessary precision. The main characteristics and differences of the methods are:

(1) Method EOH takes into account the intra daily variability by using hourly input data and hence
including the temperature variance.

(2) Methods EOOTl, EOHTl, EOOT2, EOHT2, and OAT extract the information about the intra
daily variability from daily temperature amplitudes by assuming a triangle-shaped temperature course,
which is either used to estimate the statistical parameters of the hourly temperatures or to calculate the
daily dependence function and its expected value.

(3) Method EOM uses the inter-daily variability by the variance of daily mean temperatures, but
neglects the intra daily variability.

Thus, all of the presented approaches are able, to different extents, to include temporal temperature
variability, in contrast to the widely used application of the dependence function to (long term)
temperature means (approach OA in Table 2).

However, all methods have a bias arising from the used approximations and assumptions. They assume
the temperature variables to be normally distributed and temperature mean and amplitude to be
independent of each other, which is probably not always correct. The assumption of a daily triangle
temperature course similar to the triangulation method of Lindsey and Newman (1956), might also appear
crude. However, physiological time calculated with this triangulation can be sufficiently precise, if the
times of the daily temperature maxima are known, as shown for the example of codling moth
development (Lischke, 1991). Thus, for an adequate use of the triangle approximation either the
temperature maximum time is required for each day or a method which calculates the daily dependence
function based on the triangulation independently of this time.

The latter holds for the methods EOOTI and EOOT2, where the temperature maximum time drops out
during the calculation of the daily temperature dependence. This could be an advantage over the methods
EOHTl and EOHT2 and also over the sine-sine-method of Allen (1976), because in their daily
dependence approximation this time still appears, and hence has to be determined or estimated, e.g. to be
at noon.

To assess the effects of the aforementioned potential biases and the applicability of the presented
methods, the precision and efficiency of the methods have been tested (Lischke et aI., 1996b) in several
ecological applications and compared with other common methods. The tests revealed that it can be
crucial to use all available variability information dependent on the precision requirements to obtain
satisfying results. Also, the approaches EOH, EOHTl, and EOHT2 combined high precision with high
speed at their respective levels of resolution. The effect of the bias introduced by assuming the
temperature maximum to occur at noon in EOHTl and EOHT2 turned out to be negligible.

The presented methods can be used in a wide range of ecological models where variable abiotic factors
are affecting the dynamics, e.g. in pest prognosis models. They can be particularly useful where dynamics
which still depend on smaller time scale variations have to be simulated on large time scales, as, e.g.
weather dependent plant growth in dynamic vegetation models which are used to assess the impact of
climate change over centuries. For instance, the forest succession model ForClim reacts very sensitively
(Fischlin et aI., 1994) to whether the climate input is formulated as constant input or by a stochastic
weather generator on the monthly scale but runs for several hundred years. Another example are models
for the simulation of the forest carbon cycle as reviewed by Perruchoud and Fischlin (1995), which depend
on temperature and run for even longer simulation periods (e.g. 15000 years).

The construction of the approaches is probably not restricted to the specific approximations we
presented here, other ones could be chosen as, e.g. quadratic polynomials for the daily temperature
course, exponential functions to approximate the temperature dependence function (as shown in example
2.1), or piecewise linear polynomials to approximate density functions. The latter could extend the range
of applicability beyond normal distributions, even to empirical ones.
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The approaches are also not restricted to dependence functions of temperature. The methods EDH
and EDM which do not assume a certain daily temperature course could also be applied to depen
dence functions of other abiotic factors, or more generally to the calculation of arbitrary functions of
normally distributed random variables. We used, e.g. the method EDH successfully to calculate the
expected values of a nonlinear light dependence function in the forest dynamics model DisCForm
(Lischke et aI., 1996a).

The concept of approximating the daily temperature course, which is the basis of the methods DAT,
EDHTl, EDHT2, EDDTl, and EDDT2 could be transferred to other periodicities, as e.g. inter
decadal temperature oscillations (Mann et aI., 1995) or the yearly temperature course.

This would allow the estimation of long term dependence functions of monthly temperature means,
given yearly statistic parameters of extrema and means of daily or monthly temperature means.

The methods are even not restricted to temporal variability. It may also be possible to apply them
to spatially varying input variables, e.g. during an spatial model upscaling.

4. Conclusions

Now we have a variety of methods at our disposal, which can be applied to every temperature
dependence function by simple linearization. They are suitable for different temperature input data
resolutions, e.g. minutely or hourly temperature, daily mean and daily amplitude, daily extrema,
monthly mean and monthly mean day-amplitude and monthly mean. With these methods it is possible
to use all the information about the variability in the input data as available through daily amplitudes
or standard deviations of hourly temperatures, and they can be used for arbitrarily large time steps
ranging from days to millenia. Finally they can be applied to any kind of dependence function in
many fields of ecological modelling applications.
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Appendix A. Algorithms

Here we derive in detail the algorithms, which are used to evaluate the new approaches (EDH,
EDM, EDHTl, EDHT2, DAT, EDDTl, and EDDT2) the principles of which were presented in
Section 2.1. Approximated dependence, daily temperature course or distribution density functions are
marked by a tilde.

The seven new methods approximate the temperature dependence function dep(T) by dep(T) (Eq.
(2.2.1)). Thus, this piecewise linear function dep(T) has to be defined suitably by the grid points d;,
i = 0, ... , nd - 1, e.g. by numerically minimizing the square distances between dep(T) and dep(T). Then
the expected value of dep(T) can be treated as a sum of the expected values of the different linear
pieces, i.e. E[dep(T)] = 'L7'!: I E[dep;(T)). In the following it is therefore sufficient to explain the evalua
tion of E[dep;(T)].
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For approach EDH we substitute in Eq. (2.1.3) the temperature dependence function dep(T) with the
approximation depi(T) (Eq. (2.2.1». In this way we get the approximated expected value E[depi(T)] of
each ith part of the dependence function as

(A.U)

with y = (x - fl.T)(J2(JT, ct.; = (y/Jn)(dep(di+ I) - dep(d;)/(d;+ 1- d;), Pi = (dep(d;)/Jn) + (fl.T

dJdep(di+ I) - dep(di»/«di+ I - di)Jn), and I' = j2(JT- The second integral can be solved directly, the
first one yields the error function Erf(x) = (2/.j n) J~ exp[ - r2

] dr, whose values can be obtained from
tabulations or its series expansion L~':'l (x 2

, - l( - 1)" - I)/«K - 1)!(2K - 1».
The solution is

(A.l.2)

A.2. Approaches EDM, EDHTI, and EDHT2

The approaches EDM, EDHTl, and EDHT2 are based on approach EDH (Eq. (A.l.2» but differ in
the way they estimate the data T, fl.T' and (J T

(1) For approach EDM in Eq. (A.l.2) T, fl.T' and (JT are replaced by t, fl.j' and (Jj'.

(2) In approach EDHT2 in a first step the daily mean temperatures are approximated by t ~ t m =
(Tmin+Tmax)/2 for each day. Hence we can approximate fl.j'~fl.j' and (Jj'~(Jj'.

(3) Then in both approaches EDHTl and EDHT2 we derive the'"mean fl.T and ~ariance (J T of the hourly
temperatures from the mean fl.j' and fl."" and the variance (Jj' and (J"" of the daily temperature means and
amplitudes.

The approximation of fl.T is easy, since fl.T = fl.j'.

To obtain the approximation aT of (JT we assume that the temperature course T,(t) at a specific day
:; follows a triangle, analogously to the approximation in Fig. 1band Eq. (2.2.2). The triangle is
symmetric with maximum at noon and equal minima at the beginning and end of the day. Hence we get
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The variance (J T of this approximated temperature course f(t) during m days is given through the mean
quadratic distance of each temperature value to the mean temperature by

This gives the result

(A.2.3)

Then the algorithm EDH (Eq. (A.1.2)) is used with the obtained J1T and ifT

A.3. Approaches DAT, EDDT1, and EDDT2

For the following three methods first the daily value of the ith part of the dependence function is
calculated analytically. Then the expected value of this daily value is approximated.

Daily dependence function integral. The approximated daily integral DEP(T, ~) (Eq. (2.1.5)) over the
approximated dependence function part dePiCT) (Eq. (2.2.1)) applied to the approximated temperature
course f(t) (Eq. (2.2.2)) (illustrated by Fig. 2) is given by

Dip
i
= r1

dep;(f(r» dr = r1

dep(dJ + (f(r) _ dJ {dep(d;+ J =- dep(d;) } dr
Jo Jo d; + 1 d; "i

~ i.l { (~)} ~ ~ ;.2 { (~)}= . dep(dJ + (X; T-"2 - d; + (Xir - dr + . dep(dJ + (Xi T -"2 - d;
J 1.1 Pi tmax J 1.2 Pi
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(A.3.4)

with J i.l = max(O, ('1)' l i.l = min(ti + u' tmax), J i.2 = max(tmax, ti + 1.2), and l i.2 = min(ti•b 1).
Fig. 2 shows that (.1' (+ U' ti.2 , and ti + 1.2 are the times when the temperature reaches di and di + 1, the

lower and upper threshold of the dependence function during the increasing respectively decreasing part
of the approximated daily time course T(t). These times can be calculated by the inverse function of Eq.
(2.2.2), i.e.

t=

T- t + ,1./2
t max d ' °.:-s; t < tmax

T- t+d/2
1 - (l - t max) d ,tmax .:-s; t < 1

(A.3.5)

The integration borders land J depend on Tmin and Tmax as well as on the thresholds di and di + l'

According to whether the temperatures of the regarded day remain between these thresholds, cut them or
lie outside of them, we get four different cases of (Tmim d;) and (Tmax' di + 1) combinations, where dep =f. °
(Fig. 2), mentioned in (Allen, 1976). Because Tmin = t - d/2 and Tmax = t + did, these four cases
correspond to four combinations of t and d drawn as shaded areas !lv, v = 1, ... ,4 in Fig. 3a. The values
of the integral boundaries J i.l' l i.l, J i.2' and l i.2 are given in Table 3. The resulting values for fx; and
fil; in Eq. (A.3.4) for the fOUf cases are listed in Table 4.

a) Tmin < dj < Tmax< di+1

T
b) Tmin < dj. Tmax > dj+1

T

di+1 ••• .... __ ... .... __ ....__ •

1;.1 1j.2

c) Tmin > dj' Tmax < di+1

T
d) Tmjn > dj. Tmax > d;+1

r

dj+1 __ __ __ ..

di __ dj __ ..

o 1 t 0 Ij+1,1

Fig. 2. Integration intervals of the ith part of the daily temperature dependence integral. Four different cases of daily temperature
triangles, defined through the position of the temperature extrema relative to the threshold values d, and di + 1 of the dependence
function approximation. The temperature approximation reaches the thresholds d, resp. d,+ I at times li.1 resp. li+ 1.1 in the
increasing part of the triangle, and at the times li.2 resp. Ii + 1.2 in the decreasing part of the triangle.
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a) r-------...,...,

- ./
T=dp~/2

b)
r---r---...--------,.....".....,

. lJf-g CJf

~~-g (J~ di+1-dj
•

Fig. 3. Combinations of .1. and t; (a) combinations of daily temperature amplitude .1. and daily temperature mean t, which
determine four different possibilities (areas 0v' v = I, ... , 4) of the position of the daily temperature triangle relative to the
temperature thresholds di and di + I (Fig. 2), and hereby of the formulation of the daily dependence function DEP; in Eq. (A.3.7);
and (b) Final integration area in the (t, .1.)-plane: It consists of the six areas OK where the expected value of the daily dependence
function is evaluated, i.e. the double integral (Eq. (A.3.11» is solved. The four areas of (a) are further bounded by the values of
temperature means f.lt ±2ut and amplitudes f.ll>. ±2ul>.' outside of which the density function approximation is 0 (Fig. Ie). The areas
0 1 and 0 4 of (a) are split by the line .1. = di + I - di .

In the following we transform the resulting function for DEP; (Eq. (A.3.4)) to a general polynomial
form in f and .1 which is more convenient for the numerical evaluation and particularly for the
subsequent evaluation of the expected value.

The solution for the general vth case of Eq. (A.3.4) can be expressed by

Pi«(l - k t ) + klYi+ 1 - k2 yJ +

with

0, else

(A.3.6)

- .1
d-T+-

dep(di+ 1- dep(dJ (_.1) I 2
il. i = d -d ,pi=dep(dJ+il.i T--

2
-di , Yi= .1

1+1 I

Table 3
Values of the integral boundaries J and l depending on position of Tmin and Tmax with respect to di and di + I' obtained with

J i.1 = max(O, t;.,), l i.1 = min(t;+ 1.1' tmax)' J ;.2 = max(tmax, ti + 1.2)' and l ;.2 = min(ti•2, I) and Eq. (A.3.5).

I
2
3 di

4 di

Tmin < Tmax > Tmax < J i.1 l i.1 J i.2 l i.2

di d; di+1 }',. tmax lmax tmax 1- y;(l - tmax)
di d;+1 '{'i tmax Yi+l tmax 1- I'i+1 (1- tmax) 1- Yi (1- Imax)

di +1 d; di+1 0 tmax tmax I

di +1 d;+1 0 Yi+l tmax I-Y;+I (I-tmaX> I

The values Yi are defined by Yi = (di- t + .1./2)/.1..
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Table 4
Values of fa, andfp, of DEP, depending on the combination of Tm1n and Tmax obtained by substituting the values for J and 1 of
Table 3 in Eq. (A.3.4)

V fp, f., k 1 k2

I I-y, 0.5 (1- (7) 0 I
2 l'i+I-:.l i 0.5 (Y7+ I - yn I I
3 0.5 0 0
4 Yi+ I 0.5y7+ I 1 0

The values I' are defined by II = (d,- f +M2)jt:>..

The parameters k l and kz (Table 4) depend thereby on the combination of t and d which differ for the
four cases v = 1, ... , 4 (Fig. 3a).

By backsubstitution of Y; and P; Dip;.v (k[, k z, t, d) leads to a polynomial in t and a rational function
in d, which can be expressed (e.g. with the help of symbolic calculation software) by

3 3

DEPjk[, kz, t, M= L L ~JAkb kZ)tl-ldJ-Z
J= 1/= [

with the elements ~J.I (k b kz)E CD of the coefficient matrix

(A.3.7)

CD =

Pie -kl +kz)

a;(2 - k l - kz)

2

o o

(A.3.8)

and P; = dep(d;) - aid;.
Example A.I. The case of Fig. 2b yields

- d - d
Tmax = T+"2 > d;+ I => T> d;+ 1-"2'

and corresponds thus, in Fig. 3a to area Oz. Therefore, from Table 4 we get the values fp = Yi+ 1- Yi'
fa = O.5(yt+ [ - yt), k[ = 1, and kz = 1. With these values, the ith part of the approximated'dependence
function yields

- - _ z z
DEP;,z(l, 1, T, d) - {P;(Yi + I - y;) + O.5a;d(y; + I - y; )Ln representation of equation (A.3.4)

= {~P;(d;+ [ - d;) + O.5C1.;(dt+ [ - dt» + ai(d;- d;+ I)}
as polynomial (cf. equation (A.3.7).

Expected value: now, with the approximated daily dependence function integral DEP; we are able to
determine the expected values by using the approaches DAT (Eq. (2.1.6», EDDTl, and EDDT2 (Eq.
(2.1.7».
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(1) For approach OAT, the arguments tand.1 in Eq. (A.3.7) are replaced by their mean values lIt and
II"". Analogously to Eq. (2.1.6) we get

(A.3.9)

The number v and the values k, and k2 depend on the position of lIt and II"" in the (t, .1) - plane
relatively to the actual values of dj and d;+, (Fig. 3a and Table 4). To obtain the total expected values,
the (E[DEPJ)i > 0 have to be summed over all i, i.e.

(A.3.1O)

(2) For approaches EOOTl and EOOT2 we substitute in Eq. (2.1.7) the daily temperature dependence
integral DEP(t, .1) and the probability densities Pt(y) and p",,(z) by their approximations DEP j (Eq.
(A.3.7)), i5t(Y) and p",,(z) (Eq. (2.2.3)) and obtain

E[DEPJ ~ f~x f~x DEP;(k j , k 2 , y, z)Pt(Y) dy p",,(z) dz. (A.3.]])

Because DEP; is different in the four areas Q v, v = l, ... ,4 (Eq. (A.3.6)) in the (t, .1)-plane as shown
in Fig. 3a, we now have to solve the resulting integral over each of these four domains. These integration
domains are additionally bounded by the values lIT ± 2aT and II"" + 2a"" (depending on t and .1) which
define the interval [Ilx - 2ax, Ilx + 2axl where the approximation of the density functions is i= 0 (Fig. lc).
Furthermore, the areas Q 1 and 0 4 are split by the line .1 = d; + 1 - d; to obtain as integration boundaries
of the inner integral continuous functions of the outer integration variable z. The resulting six integration
domains 0", K = I, ... , 6 are shown in Fig. 3b. The resulting boundaries together with the values k j and
k 2 are listed in Table 5. For the approximation of the expected value we get now

E[DEPJ~ t{ff {DEP;(k b k 2,y,z)Pt(Y)p",,(z)}p, dy dZ}-. _ ±fl6·'flt·'P,dYdZ.
" - I In,. E,[DEP;l '" ~, J 6., J t.,·

Thereby, the integrand P" is a polynomial of 4th order in y, and of 3rd order in z because the density
function approximations PT(Y) and p",,(z) (Eq. (2.2.3)) can be written as polynomials

3

Pt(Y)= L ("yn-I,

n~'

with the coefficients

3

p",,(z) = L PrnZrn -
1

m=l

Table 5
The integration boundaries J 6." 16.,' J t." and 1 t., and the values k l and k 2 depend on the integration domains n" which are
defined by the combination of 8 and f (Fig. 3) and by the boundaries of the parabola approximating the density functions of f
and 8 (Fig. Ic)

K J 6., 1 6., J t., 1 T., k 1 k 2

I max(O, ~6) min(d;+,-d;, "6) max(d;-8/2, ~t) min(d;+8/2, ~t) 0 I
2 max(O, ~6) min(d;+ ,-d;, "6) max(d;+8/2, ~t) min(d,+ 1 -8/2, ~t) 0 0
3 max(O, ~6) min(d;+,-d;, "6) max(d;+,-8/2, ~t) min(d;+ 1 +8/2, "t) 1 0
4 max(d;+,-d;, ~6)

"
6 max(d;-8/2, ~t) min(di +8/2,1t) 0 I

5 max(d;+l-di , ~6)

"
6 max(d;+8/2, ~t) min(di +1 -8/2, 1t) 1 I

6 max(d;+,-di , ~6)
"

6 max(d;+1-8/2, ~t) min(di +1 +8/2, "t) 1 0
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3 3,u}
4ga t - 4g 3a}

3,ut
2g 3a}

-3
4g 3a}

3 3,ui
4gaLl - 4g 3ai

3,u1;.
2g 3ai
-3

4g 3ai

and therefore we can write

= E[DE-P,.] __. ~ fl ".' fl t.. ~,- 1... 1... CjJ.m.n(k1, k 2)y'+n-2zJ +m-3 dy dz.
K = I J ".' J t.. J.I.m.n ~ 1

(A.3.12)

This integral can be solved with some calculation effort, e.g. with the help of symbolic calculation
software, because the integrand as well as the bounds of the inner integral are polynomials.

An example is given at the end of this section.
Summarized, the expected value of dep(T) is determined by summing the expected values of each of the

linear pieces of the dependence function. The expected value of the ith linear piece is calculated by first
determining the thresholds d; and di + 1 of this piece. Then the integrals over each of the areas OK' have to
be solved and summed. For each area, K determines the values k l and k2 and the integration borders J I;..K'
l I;..K' J t.K' and l t.K' (Table 5). With the k-values, the coefficients (j.tCkl' k 2) can now be determined
from matrix CD (Eq. (A.3.8» and with this information, the double integral (Eq. (A.3.12» can be solved.

The following example explains this procedure for K = 5.
Example A.2. For the case K = 5, which corresponds to Fig. 2b, we get with di + 1 - di > ,ul;. - g' aI;.,

d;+ Ll/2 > ,uT- g 'an and di + 1 - Ll/2 < J1T+ g' an from Table 5 the values k 1 = 1, k2 = 1, J 1;..5 = di + 1 

di, l 1;..5 = ,ul;. + g' aI;., J t.5 = d; + Ll/2 and l t.5 = di +' - Ll/2. Hence the 5th summand of Eq. (A.3.12) is
given by

because only (1.1, (2.1 -=1= 0 we get thus,

1
1'" +,I(G"" 2 3 Idi + I - 0/2 3

= L L PmzJ + m
-

3(j.I(l,I) L (nY 1 + n
- 2dy dz

d; + 1 - d; j = 1 m = I . d i + z/2 n = I
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