
SYSTEMöKOLOGIE ETHZ

SYSTEMS ECOLOGY ETHZ

January 1996

Eidgenössische Technische Hochschule Zürich ETHZ
Swiss Federal Institute of Technology Zurich

Departement für Umweltnaturwissenschaften / Department of Environmental Sciences
Institut für Terrestrische Ökologie / Institute of Terrestrial Ecology

Bericht / Report Nr. 27

Calculating temperature dependence over long
time periods:

A comparison of methods

H. Lischke, T.J. Löffler, A. Fischlin



© 1996 Systemökologie ETH Zürich

The System Ecology Reports consist of preprints and technical reports.  Preprints are ar-
ticles, which have been submitted to scientific journals and are hereby made available to
interested readers before actual publication.  The technical reports allow for an exhaustive
documentation of important research and development results.

Die Berichte der Systemökologie sind entweder Vorabdrucke oder technische Berichte.
Die Vorabdrucke sind Artikel, welche bei einer wissenschaftlichen Zeitschrift zur Publi-
kation eingereicht worden sind; zu einem möglichst frühen Zeitpunkt sollen damit diese
Arbeiten interessierten LeserInnen besser zugänglich gemacht werden.  Die technischen
Berichte dokumentieren erschöpfend Forschungs- und Entwicklungsresultate von allge-
meinem Interesse.

Adresse der Autoren / Addresses of the authors:

H.Lischke/ T.J. Löffler/ A.Fischlin
Systems Ecology
Institute of Terrestrial Ecology
Department of Environmental Sciences
Swiss Federal Institute of Technology ETHZ
Grabenstrasse 3
CH-8952 Schlieren/Zürich
Switzerland

e-mail:  sysecol@ito.umnw.ethz.ch



1

Calculating temperature dependence
over long time periods:

A comparison of methods

Heike Lischke1, Thomas J. Löffler, Andreas Fischlin

Systems Ecology, Institute of Terrestrial Ecology, ETH Zürich

Abstract

Nonlinear temperature dependencies play a major role in a large variety of ecological models.
For the sake of simplicity and efficiency, the temperature dependencies in many models are
calculated  for monthly or yearly time intervals, using temperature means or interpolations
between means as input. As a consequence, information about the variability of the temperature
input data is lost, which leads to a bias in the temperature dependence function and to errors in
the model results. We tested the performance of a range of other methods against this common
approach for calculating temperature dependence on a larger time scale, i.e. for a temporal
aggregation. The methods estimate the expected value of the dependence function in different
ways, using the mean or standard deviation of temperature variables in different temporal reso-
lutions as input. In our tests we used temperature dependence functions from four different
ecological fields; hourly temperature data sets from various climatically differing sites were used
as input. The precision of the tested methods increased with the resolution of the input data,
although computing time increased. The mean errors ranged from less then 1% to about 8% for
the aggregation to one month and from about 1% to over 30% for the aggregation to 10 years.
The most precise and at the same time efficient method is the explicit calculation of the expected
value for the dependence function, which is based on the mean and standard deviation of hourly
temperatures. The least precise but most efficient method is the common application of the
dependence function to mean values. Condensing available highly resolved input data into means
is only appropriate if either the dependence functions are linear in the observed temperature
range, or low precision but very high efficiency is required. Given a certain requirement on
precision or efficiency, we are now able to indicate for a number of input data resolutions the
appropriate method to calculate temperature dependence over long time periods.

Introduction

Many biologically, ecologically, and agriculturally relevant processes are controlled by tempe-

rature dependent rates. The functions dep(T) with which these rates depend on temperature T,

usually have a nonlinear shape. The accumulated effect of temperature, e.g. on insect maturity
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or plant phenology, is normally measured by means of the integral 

M(t,t0 ):= dep(T(
t0

t

∫ τ))dτ
 (1)

over a time interval (t0 ,t) . This integral is often referred to as “physiological time”, “day-de-

gree-sum”, or “heat-unit-sum”.

Temperature dependence also plays a major role in many ecological simulation models,

ranging from pest prognosis models (e.g. BUGOFF2 (Blago & Dickler, 1990) and APFWICK

(Lischke & Blago, 1990; Lischke, 1992), and crop phenology models (e.g. BIOTIME (Kirsta

& Tarabrin, 1994)), to models examining the sensitivity of ecosystems to a potential climatic

change, as e.g. the forest patch models FORSKA (Prentice & Cramer, 1993) and FORCLIM

(Bugmann, 1994; Bugmann & Fischlin, 1994; Fischlin et al., 1995), where physiological time

determines the growth and thus the competition and succession of trees.

The precision of the temperature dependence function can have a crucial influence on the out-

come of such models, depending on the model sensitivity to the regarded temperature depen-
dence function. The most exact approach is to calculate M(t,t0 ) by summing the actual values

of the dependence function using temperature data in high temporal resolution, which reflect

the diel and even more frequent temperature fluctuations.

However, due to practical constraints such as the lack of appropriate input data or long

computation times, in many models a larger time step is chosen, and temperature dependence

is calculated by applying the temperature dependence function either to mean temperatures,

(e.g. monthly temperature means as in FORCLIM) or to an interpolated temperature course

(e.g. in FORSKA or in the BIOTIME-model). Yet, monthly or yearly temperature means or

interpolations between means do not contain complete information about temperature

variability in the considered period, particularly not about the intra daily variability. If the

dependence function is nonlinear, which is realistic for many cases, such a simple approach

can lead to a loss of precision in the model outcome.

One commonly used approach for calculating temperature dependence over long intervals, i.e.

aggregating it, is to replace the nonlinear dependence function by a linear one. But this

approximation again can lead to a considerable loss of precision (cf. Blago & Dickler, 1990).

Empirical correction functions of the temperature dependence as used by Bugmann (1994)

on the other hand confine the model application to the regions where those functions have

been estimated.
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Thus, there is a need for methods which aggregate temperature dependence functions over

long periods in a precise and efficient way. A range of methods for such a temperature

dependence aggregation has been compiled and developed anew (cf. Lischke et al., 1996).

The common principle of the methods is that they estimate the expected value of the

temperature dependence function over the aggregation period. They take into account the

information about temperature variability contained in the available input data, are applicable

for general, i.e. nonlinear temperature dependence functions, and suitable for input data of

different resolution.

In the present paper, we tested the precision and efficiency of these aggregation methods  in

four case studies against the commonly used application of the dependence function to tem-

perature means and to temperatures approximated by the sine-method of (Allen, 1976). The

temperature dependence functions used in the case studies cover different ecological fields

and hierarchical levels. As an example for poikilothermic development as insect maturing or

plant growth, the development of the codling moth (Cydia pomonella) is examined.

Temperature dependent timing processes as insect diapause or seed vernalisation are repre-

sented by the chilling requirement of the apple tree bud rest break. Tree net photosynthesis is

an example for an aggregated physiological process; several species are regarded separately to

assess the influence of the temperature dependence aggregation to interspecific competition.

With soil respiration an ecosystem process is regarded, which integrates over space and many

different organisms.

Tested Methods

The methods tested in this study approximate the integral of Eq. (1) by the expected value

E[dep(T)] of the hourly dependence function in the aggregation interval (t, t0 ) , multiplied with

its length t − t0  by 

M(t,t0 ):= (t − t0 ) ⋅E[dep(T )]. 

The methods differ in the way in which the expected value E[dep(T)] is calculated or approxi-

mated. Table 1 gives an overview of the different methods, which are divided using the fol-

lowing criteria.

Three different types of approaches are used to determine the expected value E[dep(T)].

(1) The expected value is determined stochastically (type S) by generating 1000 temperature

realisations by a Monte Carlo simulation based on mean and standard deviation of the hourly
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temperature μT  and σT , calculating the temperature dependence of each and averaging it. (2)

The dependence function is applied to the mean of the regarded input variable(s) (e.g. hourly

temperature) in the aggregation period (type A). (3) The expected value of the dependence

function dep is calculated explicitly (type E), assuming the regarded temperature variable X to
be normally distributed with the distribution density px . For example, in method EDH the

expected value is given by 

E[dep(T )] = dep(x) ⋅ pT (x)dx
−∞

∞

∫ .

The input data required by the methods are the statistical parameters mean μ or mean and

standard deviation σ  of temperature variables, which are given in hourly, daily or monthly
resolution. As variables the hourly temperature T, the daily temperature extrema Tmax  and

Tmin , the daily temperature amplitude Δ , the daily temperature mean T  (either measured or

approximated by Tm =
Tmin + Tmax

2
), the monthly mean temperature μ

T
, or the monthly mean of

the daily temperature amplitude μΔ  are used. (a) Methods EDH, EDHT1, and EDHT2

determine the expected value of the hourly dependence functions based on the mean and

standard deviation of the hourly data. These statistical parameters are either estimated from the

input data in method EDH, or derived from the means and standard deviations of the daily
temperature mean T  or Tm  and daily temperature amplitude Δ  (based on the assumption of a

triangle shaped daily temperature course (cf. Fig. 1b) in methods EDHT1 and EDHT2. (b)

Methods EDDT1, EDDT2, and EDM determine the expected value of the daily dependence

function DEP(T ,Δ) . The expected value e.g.of method EDDT1 is 

E[DEP(T ,Δ)] = DEP(y, z) ⋅ p
T

(y)dy pΔ (z)dz
−∞

∞

∫−∞

∞

∫ . (2)

In method EDM DEP(T ,Δ)  is obtained by applying the hourly dependence function to the

daily mean temperature T . In methods EDDT1 and EDDT2 DEP(T ,Δ)  is given by the

integral over the daily course of dep, which is obtained by a triangle shaped approximation of
the daily temperature course, determined by the two variables temperature mean T  or Tm  and

amplitude Δ .
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Table 1: Overview of the temperature dependence aggregation methods: They are divided
according to the type of method (explicit expectation value calculation, stochastic  expectation
value calculation or dependence function of average input), the resolution and kind of the input

data needed (T hourly temperature, Tmin ,Tmax : daily temperature extrema, Δ : daily temperature

amplitude, T : daily temperature mean, Tm : approximated daily temperature mean, μ
T

:

monthly mean temperature, μΔ : monthly mean amplitude), the statistical parameters estimated

from these data (μ: mean, σ : standarddeviation) and the approximations used (dep: dependence
function, TC: daily temperature course, ND: normal distribution).

Method Abbr. Type Temperature input data Approx.

Temporal
resolution

Variables Stat.
param.

Stochastic generation of average
dependence function

STOCH S hours T μT ,σT
dep

Expectation value of dependence
function of hourly temperatures

EDH E hours T μT ,σT
dep
TC

Expectation value of dependence
function  of hourly temperatures
approx. by triangle of mean and
amplitude

EDHT1 E days T ,
Δ = Tmax − Tmin

μ
T
,σ

T

μΔ ,σΔ

dep
TC

Expectation value of dependence
function of hourly temperatures
approx. by triangle based on
extrema

EDHT2 E days
Tm =

Tmin + Tmax

2
Δ = Tmax − Tmin

μ
Tm

,σ
Tm

μΔ ,σΔ

dep
TC

Expectation value of dependence
function of daily temperature
triangle based on mean and
amplitude

EDDT1 E days T ,
Δ = Tmax − Tmin

μ
T
,σ

T

μΔ ,σΔ

dep
TC
ND

Expectation value of dependence
function of daily temperature
triangle of extrema

EDDT2 E days
Tm =

Tmin + Tmax

2
Δ = Tmax − Tmin

μ
Tm

,σ
Tm

μΔ ,σΔ

dep
TC
ND

Expectation value of dependence
function of daily temperature
mean

EDM E days T μ
T
,σ

T
dep

Dependence function of average
daily temperature triangle

DAT A months μ
T

, μΔ μ
T
,μΔ

dep
TC

Sine-sine method of Allen
(control)

Allen - days
Tm =

Tmin + Tmax

2
Δ = Tmax − Tmin

- -

Dependence function of average
temperature (control)

DA A months μ
T
= μT μ

T
dep
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c) Approximation of distribution densities

px(X)

μxμx-g·σx  μx+g·σx  

~px(X)

Frequency

x0

b) Approximation of daily temperature course

0 1

Temperature T

Δ

tmax

Tmax

Tmin

daytime t

a) Approximation of temperature dependence function

0

1

dep(T)

Temperature  T 
d0 d1 d4d2 d3

Fig. 1: Approximations (dashed lines) used in aggregation methods.

We used some assumptions and approximations. The random variables daily temperature
mean T  and Tm  respectively, and the amplitude Δ  are assumed to be independent. As ap-

proximations we use a piece wise linear function for the nonlinear temperature dependence

function dep(T), an asymmetric triangle ƒT(t) with the same minimum temperature at the be-

ginning and end of the day and a variable time point tmax of the maximum temperature for the

daily temperature course (TC) (cf. Fig. 1b), and a parabola ƒp  (cf. Fig. 1c) for the normal
distribution densities (ND) p

T
(y) and pΔ (z) in Eq. (2).

We used the approximated dependence function applied to the hourly temperature values and

averaged over each test period as a reference (exact value) in the case study test. As controls

we utilised the commonly used methods of applying the dependence function either to the

mean temperature, i.e. method DA, or to hourly temperatures obtained by a sine-wave

approximation of the daily temperature course (Allen, 1976) (without empirical correction).

The stochastic temperature generator STOCH served as a third control.
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Case Study Tests

To test the performance, in terms of precision and efficiency, of the seven new aggregation

and three comparison methods DA, STOCH, and Allen, four case study tests with the

following temperature dependent processes from different ecological fields were carried out:

a) Soil respiration (cf. Fig. 2a), modelled with the function used in Parton (1993); b) Bud

rest break (cf. Fig. 2b) of apple trees, as modelled by del Real-Laborde (1990); c) Tree net

photosynthesis (cf. Fig. 2c) of the tree species Pinus cembra, Picea abies, Abies alba, Larix

decidua, Betula pendula, and Fagus silvatica, parametrized with the cardinal temperature

values documented in Pisek (1969); d) Development of the larval and pupal stages of the cod-

ling moth (Cydia pomonella L., (Lepidoptera, Tortricidae)) with the temperature dependence

function from Lischke (1990) (cf. Fig. 2d).

d) Codling moth development
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c) Tree net photosynthesis
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Fig. 2: Temperature dependence functions of the processes tested in the case studies. Dotted
line or separate points: dependence function, solid line: approximation, black squares:
discretization points of approximation.



8

For the soil respiration case study a) an 8-month time series (data provided by Richner

(1994)) of hourly soil temperatures at 10 cm depth under grass was used as input. As input

data for the case studies b), c), and d) served 11 years of hourly air temperature from six

climatically differing sites (ranging from dry temperate to boreal climate) in the European

Alps. For the bud rest break study b) only temperature data of the winter months (October to

April) were included in the analysis.

We calculated the monthly expected values of the dependence functions, i.e. aggregated them

from an hourly to a monthly time step in the case studies a), b), and c). To explore the influ-

ence of the aggregation period length in case study d) the 2-, 3-, 6- monthly, yearly, and 10-

yearly expected values were also calculated.

The performance in terms of precision and efficiency of all methods was determined for each

aggregation period Pa at each test site. The precision, i.e. the error due to the aggregation, was

measured as percentage difference between exact temperature dependence expected value and

the value obtained by the aggregation methods. The efficiency eff of the methods is given in
percent computing time Δtmethod  of the run-time needed to calculate the exact value, which is

given by the Pa fold of the time needed for one day 

eff =
100 ⋅ Δtmethod

Δtexact

=
100 ⋅ Δtmethod

Pa ⋅ Δtexact,day

.

The time for calculation of the statistical parameters of the data was not included in this

measurement.

All methods except Allen need only one evaluation regardless of the aggregation period
length. The ratio Δtmethod / Δtexact ,day  of the time required for this single evalution to the time

required for the exact evaluation for one day then can be determined with 

Δtmethod

Δtexact,day

=
eff ⋅Pa

100
.

This ratio yields also the critical aggregation period length Pa,crit , above which the tested me-

thods starts to be faster than the exact evaluation.

The performance tests were implemented in the programming language Modula-2 using the

program library of the Dialog-Machine V2.2 (Fischlin, 1991) and run on a SUN

SPARCserver10 with the batch environment RASS (Thöny et al., 1994).
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Results

Figs. 3a, b, and c show the errors of the different approaches for the aggregation to one month

in three case studies. For the soil respiration the errors are very small, below 0.5%. In contrast

to this, the aggregation errors in the case studies apple tree bud rest break and tree net

photosynthesis reach up to 30% for method DA, with the mean values ranging from below

1% for method EDH to 12% for method DA. The mean errors and the error variability

increase from EDH to DA, same as the differences of the errors between the tree species in

the tree net photosynthesis study. The methods which calculate the expected value and include

information about the daily temperature variability, by the temperature variance as EDH and

STOCH, or by the temperature amplitude as EDHT1, EDHT2, EDDT1, and EDDT2, are of a

similar or higher precision than the control, the sine-wave-approximation of Allen (1976).

In Fig. 3d (codling moth case study) the errors for the aggregation to various periods are

compared. For the one month aggregation the results are similar to those of the case studies

b) and c). As the period length increases, in methods DA and DAT the mean errors increase

up to 30%, whereas in the other methods it remains constant. Fig. 4 shows for the same case

study the computation time of the different methods measured in percent of the time needed

for the exact calculation. The computation time was plotted against the mean percentage

aggregation error, which corresponds to the middle line in the box plot in Fig. 3d.

Fig. 5 qualitatively summarises the relationship between precision, efficiency, aggregation

period length and input data resolution. The general trend is that precision increases with the

information contained in the input data. At the same time efficiency decreases. In Figs. 4

and 5 we can distinguish between three groups of methods.

(1) Methods EDH, EDHT1, EDHT2, Allen, and EDM combine high precision (error < 5.5%)

with high efficiency (from below 1% to 30% of the exact computation) for all tested

aggregation periods. The use of the Allen method pays off for all aggregation periods longer

than one day, the use of the other four methods for aggregation periods longer than 10 days.

(2) Methods EDDT1, EDDT2, and STOCH have mainly the same precision as group 1,

however a 9, 9, and 5 times longer computing time, respectively. This means, that these

methods start to pay off at aggregation periods of 90, 90, and 50 days, respectively.

(3) Methods DA and DAT are the most efficient (< 1% for all aggregation periods, always

faster than exact calculation), but least precise methods. Their precision decreases from > 8%

to 30% with the aggregation period length
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d) Codling moth development
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approximated with several methods to the exact temperature dependence value. Means and
standard deviations of the difference distributions are given as point symbols and bars.
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Absolute error of aggregation methods 
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Discussion and Conclusions

In this study, a range of approaches for aggregating temperature dependence functions to

longer time periods was tested. The aim was to assess the suitability of the methods for a

variety of input data resolutions, given certain precision and efficiency requirements.

The most appropriate method for a specific model can be chosen from Figs. 4 and 5,

depending on the availability of input data (cf. Table 1), the relative importance of precision

and efficiency, and the required aggregation period of the model.

When temperature data in hourly resolution are available, the dependence function can be

estimated accurately with EDH, if computing time is limiting and the aggregation period is

longer than about 10 days. Otherwise it can also be calculated exactly. The stochastic tempe-

rature generator STOCH is generally as precise as method EDH, but less efficient. If daily

mean temperatures and extrema are available, EDHT1 is the best choice. If only daily extrema

are obtainable and the aggregation period is longer than 3 months, EDHT2, for shorter

aggregation periods the Allen method has the best performance. EDM is the only usable

method if just the daily temperature means are available. Finally, if only aggregation period

means of temperature and daily amplitude respectively only of temperature are obtainable,

method DAT respectivley the commonly used method DA are the only possible choices.

Method DA yields the largest mean bias of all methods, 8% respectively 30% (aggregation to

one month respectively 10 years). Such an error can influence strongly the outcome of a mo-

del. For instance, an 8% respectively 30% bias in the codling moth developmental rate with

the parameter values from Lischke (1992) would correspond to 0.2 respectively 0.8 less

codling moth generations per year, an intolerable inaccuracy e.g. in a pest prognosis model.

The large error variability connected with this high mean error renders the method even less

reliable and hinders the use of empirical correction terms.

In the soil respiration case study, the errors of all methods, also of DA, are very small. Here,

the temperatures remained mostly in the linear part of the dependence function approximation.

This shows that the application of the dependence function to the temperature mean (method

DA) is reliable for temperature data remaining in the linear part of the dependence function.

For the case of highly resolved input data, the results suggest to optimize precision and effi-

ciency by the appropriate choice of the aggregation method and throught this by the aggrega-

tion level of the input data. This means to use as much information of the input data as avail-

able, if precision and not computing time is limiting or the efficiency of several methods is



13

similar, as e.g. for EDH, EDHT1, EDHT2, Allen, and EDM. In cases of low precision or very

high efficiency requirements and also for mostly linear dependence functions, a condensation

of the input data into means and mean amplitudes and the application of method DAT or DA

is reasonable. Finally, a good compromise between precision and efficiency requirements for

high input data resolution is method EDH.
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