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Calculating temperature dependence over long time periods:
Derivation of methods

Heike Lischke., Thomas J. Leffler, Andreas Fischlin
Systems Ecology, Institute of Terrestrial Ecology, ETH Zurich

Ra.t.es of ecological processes a.re usually inftueliced by tempera-ture. Fot simplicity aJld ef
ficiency of ecosystem moods it is often DeceMiU"Y t.o $U..lD.lDa.rise informatioo about temperature
dependence from short, e.g. hourly, time inle.rYab over longer, e.g. monthly. time periods, i.e. to
calculate long term expected ruues of dCpeDdence functioM. This &im can seldOm be achieved by
applying the i.emperature [unction to the meaJI temperature, because tempera,luc dependencies
arc in muy c.uelI nonlineu. Therefore, we derived newly seven methods for ncb a te.mporal
~rlCgation of kmperalure dependence. The methods determine the expeaed nlue interpreting
either haudy temperature, daily te.mperatUlc meaD, or diLily t~pen.ture mean aDd amplitude as
random vula.ble.. The depe.Ddence function hereby is approximated by a piecewise linear functioD,
the daily temperature course by a triangle ud the density function of the Dormal distribution by
~ parabola..
The resulting methods covu il ruge of lc:mpa~tUJ'e input d~ta resolutions: monthly meu or
standard deviation or both of either hourly temperatures, daily temperature extrema., daily tem
per~ture meu, and amplitudes, or only daily tempu~ture me~ns. The methods can be ilpplied
to it.ll types of dependence functions, in partkular to nonlinear onlCS.

Key words: temperature dependr:na:, pbysiolo&kaJ time, modding, ~ga.l.ion, approximation, temperature time
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1 Introduction

Many biologically or ecologically relevant processes are temperature dependent. This bolds for de
velopment. processes of poikilothermic organisms, as e.g. t.be maturing of insects or the growth of
plants. Also processes used to synchronise an organism's life-cycle to seasonally changing environ~

mental conditions, such as insect diapause, seed vernalisation or timing of t.ree bud rest break are
at least partly regulated by temperature. The functions cip(T) by which these processes depend on
temperature T are usually nonlinear. Cummulative effects of temperature on such biological processes
can be measured by means of the integral

M(t,t,) ~:,.1'ctp(T(r))dr
'.

(l.O.l)

over a time interval (to. t). This integral is often referred to as "physiological time" , "day-degree-sum" ,
or "heat-unit--sum".
Temperature dependence plays also a major role in many ecological simulation models, ranging from
pest prognosis models (e.g. BUGOFF2 (BLAGO AND DICKLER 1990) and APFW1CK (LISCHKE AND
BLAGO 1990, LlSCHKE 1992), over crop phenology models (e.g. BIOTIME, (KIRSTA AND TARABRIN
1994), to models examining the sensitivity of ecosystems to a potential climatic change, as e.g. the
forest succession models FORSKA (PRENTICE ET AL. 1993), FORCLIM (Bum.1.ANN 1994, FISCHLIN
ET AL. 1994), and DlsCFoRM (LlSCHKE ET AL. 1995A), where physiological time determines e.g.
the growth and thus the competition of individual trees.
An imprecise formulation of the temperature dependence funct.ion can seriously influence t.he outcome
of such models, depending on the model sensitivity to the regarded temperature dependence function.
For example, an about. 10% error of the temperat.ure dependence of codling moth developement leads
to an error of about 7 days in the simulations with a pest prognosis model (LISCHKE 1992) in Central
Europe. Depending on the application, such an error might be untolerable.

The most exact approach is to calculate M(t. to) by summing the actual values of the dependence
function using temperature data in high temporal resolution, which re8ect the diel and even higher
frequency temperature fluctuations.
However, due to practical constraints as the lack of appropriate input data, long computation time,
or the desire to keep a model as simple as possible, in many models a larger time step is chosen and
temperature dependence is calculated by applying the temperature dependence fundion either to the
mean temperatures, (e.g. monthly temperature means in FORCLlM) or to an interpolated tempera4

ture course (e.g. in FORSKA or theBIOTlME-model).
Yet, monthly or yearly temperature means or interpolations between means do not contain all in
formation about the temperature variability in the regarded period, particularly not about the diel
variation. If the dependence function is nonlinear, which is the case for many processes, such a simple
approach can lead La a loss of precision in the model outcome.
To overcome this conflict between required precision and manageability, methods are necessary to
calculate physiological time as precisely as needed using as much information of the available input
data as possible. The methods should work on larger time scales, at least one day, preferably one
month, year, or decade. i.e. aggregate the temperature dependence function from the small time scale
of the input data to a larger time scale. This means, the methods summarise the information about
temperature dependence from short time intervals over longer periods.

Several approaches exist. to deal with this problem. (1) A possibility is to approximate the non
linear dependence function using a linear one with a lower and an upper threshold, and to sum the
daily values of this approximation as in BUGOFF2 or by calculating its expected value (ACEITUNO
1979). However, the use of such a linearly and monotonically increasing approximation instead of
the original dependence function or a better matching nonlinear approximation as e.g. the sigmoid
function proposed in (STINNER ET AL. 1914) or the biophysical models presented by Sharpe and
DeMichele (1977) and Wagner et al. (1984) can lead to considerable loss of precision (BLAGO AND
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OICKLER 1990).
(2) Other approaches apply the dependence function to an estimated daily temperature course, which
has been approximated by models such as the triangulation method of Lindsey and Newman (1956),
the single sine method by Baskervile and Emin (1969), the sine-sine-method of (ALLEN 1976), or the
sine-exponential method of Parton and Logan (1981). However, tests of some of these methods by
Worner (1988) did not show a satisfactory precision for all tested sites. Moreover, if it is nonlinear,
the temperature dependence function can not be evaluated in one step for each day but has to be
applied to hourly values of the approximated temperature course, so that no computing time is saved
compared to the use of the original hourly input data. The computational costs for solving the integral
M(t, to) over one day can only he reduced for uncomplicated, e.g. linear dependence functions as in
BUGOFF2.

(3) Empirical correction functions of the temperature dependence as used by Allen (1976) or Bug
mann (1994) on the other hand confine the model application to the regions where those functions
have been estimated.

Summarised, the above listed approaches are either restricted to a special, often linear type of depen
dence function, to a certain length of the aggregation period, or to a certain kind of input data, even
if more detailed information about the temperature course in the aggregation interval is available. Or
they have to be combined with empirical correction terms to yield satisfying results.

The aim of this paper is to derive several approaches for temperature dependence aggregation

• which are applicable for general, i.e. nonlinear temperature dependence functions;

• for temperature input data of different resolutions;

• which are able to use as much information as possible in the available temperature input data,

• and to work with arbitrarily large time steps, ranging from days to decades;

• and which are generally formulated and therefore extendible to other fields of dependence func~

tions;

2 Derivation of Methods

2.1 Principles

In this section the approximation principles of the methods are described. The same general idea is
underlying all described approaches. Ifwith a certain temperature r, PT,<ICI(X) is the relative frequency
in the aggregation interval (to, t), e.g. one month, then the physiological time M(t, to) (cc. (1.0.1» can
be expressed by the integral over the dependence function of % multiplied with its absolute frequency
by

M(I,I,) ••
O~f. l dp(T(T»dT

(I - t,)I: PT,o,,(x)dp(x)dx

(I - I,)E[dp(T)].

Thereby E[d:p(T)] is the expected value of the temperature dependence function d:p(T). The problem
is to find a reliable estimator for E[dp(T)] in (to, t), given the mean value and standard deviation or
only the mean value of temperature or related variables as e.g. temperature extrema.
In the following eight methods for the estimation of E[d:p(T)] are derived. The approximations used
for the estimation and the exact algorithms are given in sections 2.2 and 2.3 respectively. The symboiB
are explained in tab. 5 in the appendix. For sake of simplicity we consider the aggregation from an
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hourly to a monthly time interval, but tbe methods can also be applied for other aggregations from
all time intervals of less than ODe day to larger ones, e.g. one year or decade.

2.1.1 Methods using the hourly temperature as random variable

We describe two approaches, abbreviated as OA and EOB respectively, which regard the hourly
temperature as a normally distributed random variable with the density function Pr(z).
In the widely used approach DA, the expected value is approximated by applying the dependence
function directly to the mean temperature value J.'T in the regarded period, Le.

E[dp(TlJ'" dp(PT)· (2.1.1)

In approach EDB the expected value E[dp(T)J of the hourly values of the temperature dependence is
calculated explicitly by

E[dp(T)] =

e-("-I'T)3/ 2..-?

uT...j2;l: dp(x)PT(x)dx.

(2.1.2)

(2.1.3)

2.1.2 Methods using daily temperature mean, amplitude, and extrema as random vari
ables

If no hourly input data, but data about the daily temperature means, amplitudes, or extrema are
available, the folJowingsix methods EOHT1, ETBT2, EOM and OAT, EOOTI, EDOT2 can be used.

Methods approximating the statistical parameters of hourly temperatures (1) Approach
EDBTl applies the same algorithm as EOD, but estimates the mean PT and standard deviatIOn tTT
(cr. (2.3.2)) £If the hourly temperatures from the means JJ1', J.'tI. and standard deviation tT'f, (ltI. of the
daily mean T and amplitude a.
(2) Approacb EOBT2 corresponds to EOUTI, with th~ diff~rence of calculating the daily temperature
mean T and amplitude 6 from the daily extrema by T ~ Tm =T.;·lTmu and 6 =Tmaz - Tmin _

(3) In approa.!=h EOM the expected value is calculated explicitly as in EDB, but with the daily mean
temperature T as random variable, which corresponds to the assumption that hourly and daily mean
temperatures have a similar variance.

E[dp(T)J

e-(lI-I'.,.?/2..;

(IT .,j'2i1: dp(y)P1' (y)dy. (2.1.4)

Methods approximating the daily temperature dependence function In a first step the
temperature course T(t) for each day is approximated by a function T(t, '1', 6) (cf. (2.2.2» :>fthe daily
average temperature T and daily temperature amplitude 6. Then the daily integral DEP(T,.6.) of the
temperature dependence function dp(71 applied to this approximated temperature course T(t, t,.6.)
is evaluated (d. (2.3.5) and (2.3.6» by

(2.1.5)

fOr each day normalised to the interval (0,1) of the period (to, t). In a second step the expected value
E[DEP(1',6)] of DEP(T, 6) for all days in (to,t) is determined.
(1) Approach OAT approximates E[DEP(t, 6)] by applying DE? to the average daily temperature
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course, which is characterised by the average daily temperature mean IJ'1' and the average daily
temperature amplitude IJIJ., i.e.

E[DEP(T, 6)J " DEP(1'1' , "0). (2.1.6)

(2) In approach EDDTI the expected value of DEP(f',.6.) is calculated, regarding daily temperature
mean f' and amplitude .6. as independently normally distributed random variables with means IJ'1'
and IJIJ.. standard deviations 6T and U'IJ., and density fundions n(y) and PA(Z), which are defined
analogously to eq. (2.1.2). The expected value E(DEP(f', .6.)] is defined by

(2.1.7)

(3) Approach EDDT2 corresponds to EDDTl, except that the daily temperature mean t is calculated
by T- - T.~ - Tmi· tT....

- m - 2 •

2.2 Approximations

In this chapter the approximations underlying all derived methods are described. The integrals in

a) Approltimation of temperature dependence function

b) Approximation of dally temperature course

'1~~------""""1>""'"Tmin - ~

o 'rr:u~

Figure 1: Approximations used in by the a.ggre

&ation methods: a) Approximation of the tem
pen.ture dependence function by a piece'l'll'ise lin
eu function, defined by a set of grid poinhi cl;
and the correspondin& values of the dependence
function. b) Approximation of the daily temper
ature course wring a triangle between Tm ," and
T........ The maximum is reached at time t ........ c)
Approximation of the density function px(.:l:) of
the normal distribution by the parabola px(~),

X = T, tJ. (J.lX, ux il.Ie the mean and stiUldard
deviation).

..
daytime'

o....

c) Approximation 01 distribution densitIes
F..que""ly•
"".,.,

eqs. (2.1.3), (2.1.4), and (2.1.7) are of the type Je-(r-..)~1(%) and thus not analytically soluble for
all types of functions I. Therefore, we use the following approximations (cf. figs. la, Ib, and Ie):

e The temperature dependence function dp(T) is approximated by a piecewise linear function

dp(T) with the "" grid points d;.

- { .••.0.) + (T _ d,)"";±,)-"C',) d· < T < d",
dp(T) = ""f'\.... • 11'+1-'" " - •

o ,else
,i=O, ... ,",,-1. (2.2.1)

In fig. la e.g. an approximation with four linear parts is shown.
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• The daily temperature course is approximated by an asymmetric triangle T(t) with the same
minimum temperature at. the beginning and end of the day (d. fig. Ib) and a variable time
point tm ..., of t.he maximum temperature.

Tm;n

T(l)

- '" - '"=T-2"jTm...,=T+"2;

{

- d dT -"2 + t-,- ,O:S t < t maz_ ... u
- - 4 .0.

T - "2 + (1 - t) 1-l
uR

' tmu :S t < 1
(2.2.2)

• In eq. (2.1.7) the normal distribution density functions Pr(y) and P.o.(z) are each approximat.ed
by a polynomial pofsecond order which are set to 0 for values x, y < 0 (in fig. Ie: z < JJx - guX
and z > JJX + gcrX, X = T,6). Tbe parameter 9 determines the width and height of the
parabola. In fig. Ic the approximation for 9 = 2.3 is shown.

fix(Y) = { IS~X ((Il- (Y;/t)').JJX -gux < y < JJX +guX

o ,else
(2.2.3)

with X = 1',6.. With these approximatioRB we get (piecewise) polynomials for all fundioRB in the
integrals (2.1.3), (2.1.4), and (2.1.7). The so replaced integrals can be solved analytically with the
help of symbolic calculation software as e.g. MATHEMATICA or MAPLE. In the following we refer to
the aggregation methods using these approximations with a tilde.

2.3 Algorithms

In this section we derive in detail the algorithms, which are used to evaluate the new approaches
(EDD, EDM, EDHTl, EDBT2, OAT, EDDTl, and EDDT2) the principles of which were presented
in section 2.1.
The seven met.hods approximate t.he temperature dependence function dp(T) by dp(T) (cf. (2.2.1».
Thus, this piecewise linear function dp(T) has to be defined suit.ably by the grid points do, i =
0, ... ,"d - 1. Then the expected value of dp(T) can be treated as a sum of the expected values of
the different. linear pieces, Le. E[dp(T)J = :L7~1 E['*vj(T»). In the following it. is therefore sufficient

to uplain the evaluation of E[dp;(T)].

2.3.1 Approach EDH

For approach EDli we substitute in eq. (2.1.3) the temperature dependence fundion ctp(T) with the
approximation dp;(T) (cr. (2.2.1». In this way we get the approximated expected value E['*vj(T)]
of each i'/I. part of the dependence function as

E[<!P,(Tl]

with a' = d!p(dit ')-j7,<d,l---l.....- Q. =~ _ aid· ow = 2uT' wbich can be solved e.g. with the help
• oI'+!_ i V'T,j2;' P';:;::J21i " ,

of symbolic calculation sofiware, becau~ the fundion {J; + ai:t is linear in x. The solution yields
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0.5 (XI'Y (2.3.1)

"h h ~ ,. E I() h',c h .m> b h . ~It~u ,.l"-I(_J)"-I .
WI t e errouunc Ion r z, w I..u can e expraRM:U Y ~ e series £... ..=1 (It 1f!(2..- I)' stoppmg
after l'im.... iterations.

2.3.2 Approaches EDM, EDHTl, and EDHT2

The approaches EDM, EDHTI, and EDHT2 are all based on approach EDH (2.3.1) but differ in the
way they estimate the data T, PT, and t1'T.

(1) For approach EDM in eq. (2.3.1) T,PT, and t1'T are replaced by T,M. and t1'1'.
(2) In approach EDHT2 in a first step the daily mean temperatures are approximated by T ~ Tm =
Tm;·1T,.... for each day. Hence we can approximate JJ1':::::: M_ and t1'1':::::: t1'1'....

(3) Then in both approaches EOHTI and EDHT2 we derive the mean PT and variance aT of the
hourly temperatures from the mean M and JJt1 and the variance t1''1' and t1't:J. of the daily temperature
means and amplitudes.
The approximation of JJT is easy, since JJT = JJ1"
To obtain the approximation UT of t1'T we assume that the temperature course Tdav(t) at a specific
day fonows a triangle, analogously to the approximation in fig. lb) and eq. (2.2.2). The triangle is
symmetric with maximum at noon and equal minima at the beginning and end of the day. Hence we
g,t

{
T.- _ 64., + t 64., 0 < t < 0 <

'() do, 2 O.S ,_ ....T,., t • • .t _:.!U + (I - t)='= 0 < <t < Ido, 2 0.5'·... _

The variance aT of this approximated temperature course T(t) during m days is given through the
mean quadratic distance of each temperature value to the mean temperature by

1 m rl 2

ITt m L: 10 (Td",(t) - PT) dt

= ~:~:;"5 (:"'-!-PT.+ty )' dt

2 m r·'- L: 10 0 2+ 20{Jt + {J2(l dt
m da,=1 0

~ t (.' + ·t + ~' )
da,=1

I {'-.. (. )' (. ) ~l., (. ~,.,) 4~l.,= m L.J Tda, - /AT - .1.da, Tda, - JJT + 4 + TO'", - JJT - -2- .1.da, + 12
da,=1

,~,~, (r,., - PT)'.< ,~, ( ~'" (-r,., +~'" -pd PT),+~l.,G-~ +D)
•

, ..~
7



This gives the result

1(, 'J '=>ur== 12 tTLJ,,+JlA +tT1"

Then the algorithm EDH (2.3.1) is used with the obtained Jlr and <ir.

2.3.3 Approaches OAT, EDDTl, and EDDT2

(2.3.2)

For the following three methods first the daily value of the IotA part of the dependence function is
calculated. Then the expected value of this daily value is approximated.

Daily dependence function integral T~ approximated daily integral DEP(T, A} (2.1.5) over
the approximated dependence function part dp,{T) {2.2.1} applied to the approximated temperature
course 1'(t) (2.2.2) (illustrated by fig. 2) is given by

= /,11., dep(d;) + 0'; (1' _ ~ _ d;) ::;r~dr+
JI,. , I t maz

•p,

/,1,., (6) 6
dep(d,)+a; 1'--2 -do +ai(l-r} _ dT

JI,'l , _ I tm " •
•
p,

a;6 (1' ')== P;(1i,I-Ji,1)+-2' j,l-ji,1 +
-"

(1 a;6 (1 1 (1' , »Pi ;,2-ji,2)+ I-t
mu

i,2-Ji,2- 2 i,2-J,,2 +

I.,
ai

A
(l - tmaz ) O~,l -j~.I) - tm ". O~.2-J~,2) + 2 tmu (1i,2-j,,2)
. 2tmaz{l-tm".) .

•

(2.3.3)

with Ji,l == max(O,t;,d, 1;,1 == min(t;+I,l,tmu), Jj,2 == max(tm ,,,,,tl+ I,2)' and 1;,2 == min(tj,], 1).
Fig. 2 shows that t"l, ti+I,1> ti,], and ti+I,2 are the times when the temperature reaches d; and
di +ll the lower and upper threshold of the dependence function during the increasing respectively
decreasing part of the approximated daily time course T(t). These times can he calculatC!d hy the
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(2.3.4)

inverse function of eq. (2.2.2), i.e.

{

T-~+ttma", .0. ,O:St<tma",

t = t-1'+'
l-(I-tma:) .0. ,tma",:St<1

The integration borders 1 and J depend on Tmin and Tma", as well as on the thresholds d, and di+1.
According to whether the temperatures of the regarded day remain between these thresholds, cut
them or lie outside of them, we get four different cases of (Tm,n, do) and (Tma", , di+d combinations,

where d-:p:f:. 0 (d. fig. 2), mentioned in (ALLEN 1976). Because Tmin =T - ~ and Tma", ='1' +~,
these four cases correspond to four combinations of T and .6. drawn as shaded areas n", v = I, ... ,4 in
fig. 3a). The values of the integral boundaries Ji,l' li,l,Ji,2, and 1i" are given in tab. 1. The resulting
values for fOIl and fIJI in eq. (2.3.3) for the four cases are listed in tab. 2.

v Tmin Tmin Tma", Tma" Ji,1 Ii,l ji,2 J;"
> < > <

1 d; d; di+l "'Ii tm ..", tm ..", tm ..", 1 "'Ii (1 tm"",~
2 d; d'+ 1 "'Ii tm"", "'Ii+1 tm ..", 1- "'Ii+l (1 - tm ",,) 1-,; (1-'_0,)
3 d; di+1 d; di+1 0 tm"", tm "", 1
4 d; di+1 di+1 0 "'Ii+l t m "", 1- "'1'+1 (1 - tm "",) 1

Table 1: Values of the integral boundaries J and 1 depending on position of T...in and T...u with respect
to d; and di+l' obtained with J;,l = max(O,ti,1), li,1 = min(t;+1,I,t".,u), J;,1 = max(t""U,t;+1,1), a.nd

1;,1 = min(ti,2, 1) and eq. (2.3.4). The values 1'; are defined by 1'; = <I;-~+t.

v fp; fOl' k, k,
1 1 ,; 0',5(.1 ,;l 0 1
2 1";+1 - "'Ii O.5(-Y?+1 - "'11) 1 1
3 1 0.5 0 0
4 1'i+1 0.51"1 1 0

Table 2: Values of fa. a.nd fill of DEP;
depending on the combination ofT...;n and
T".,,,,, obtained by substituting the values
for J and 1of tab. 1 in eq. (2.3.3). The

<I.-T+tvalues 1'1 are defined by 1'; = 0. •

In the following we transform the resulting function for DEPi (d. (2.3.3)) to a general polynomial form
which is more convenient for the numerical evaluation and particularly for the subsequent evaluation
of the expected value.
The solution for the general v'h case of eq. (2.3.3) can be expressed by

{

P;«(1- k,) + kn;H - k,,;)+

DEP;,,,(1.:1, 1.:2 , T,.6.) = Qi~(l - 1.: 1) + 1.:1"'1;+1 - k21'l) , d i - ~ :S '1' ~ di+1 + ~ (2.3.5)

o ,else
- A

. &P(d;+,) - &P(d;) (- t.) d; - T +.,
With Q, = di+l d

i
' Pi = dp(di) + Qi T - "2 - di ,1"i:::: ~ .

The parameters 1.: 1 and 1.:2 (cC. tab. 2) depend thereby on the combination of T and 6. which differ
for the four cases v = 1, ... ,4 (eC. fig. 3a).
By backsubstitution of "'Ii and Pi Mi, ...(k 1 , k2 , T, 6.) leads to a polynomial in t and a rational function
in .6., which can be expressed (e.g. with the help of symbolic calculation software) by

3 3

DE?i,,,(k l , 1.:2 , '1',.6.) = L L{i,I(1.:1 , 1.:2)YI-l .6.i - 2

i=l 1=1

9

/?i(-1.: 1 + 1.:,)
01.(2 k, k 2 ),

o

(2.3.6)



di+l di+l ..

d·I . Figure 2: Four different cases of daily
temperature triangles, defined through
the position of the temperature ex
trema relative to the threshold values
d; and di+l of the dependence function
approximation. The temperature ap
proximation reaches the thresholds d,
resp. di+1 at times t;.l resp. t,+1,1 in
the increasing part of the triangle, and
at the times t,,'1 resp. t,+I,'1 in the de
creasing part of the ~riangle.

\,1 \+1,1 \+1,2 \,2

dl ..

\,2\,1

di+1 .

d( dj .

o 1 1 o \+1,1 \+1,2 1

T

a) ,- -;;;--

d"

d;

b) ,.---,_,-__."....,

Figure 3: a) Combinations of da.ily tempera~llre amplitude !:J. arid daily temperature mean T, which determine
four different possibilities (areas n", I' = 1, ... ,4) of the position of the daily temperature triangle relative to
~he temperature thresholds d; and d'+1 (d. fig. 2), and hereby of the formulation of the daily dependence

function DEPi in eq. (2.3.6). b) Final integration area in the (T,!:J.)-plane: It consists of the six areas 0 ..
where ~he expected value of the daily dependence function is evaluated, i.e. the double integral (2.3.10) is
solved. The four areas of a) Ilre further bounded by the values of tempera.ture means ~1'± 20"1' and amplitudes
P6 ±2uLl., outside of which the density function approximation is 0 (d. fig. Ie). The areas 0 1 a.nd 0 4 of a)
are split by the line !:J. = d,+l - di.
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(2.3.7)

and ~; :;:: cip(di) - Q;di.

Example 2.1 The case of fig. t.t yield"

_ lJ.
Tm.u =T+"2 > di+l

Tm,n
- lJ.

=T-"'2<di
lJ.

< di+ 2'

and corresponds thu in fig. 3a} to area 0 1• There/ore, from ta6. ! we get the valun fIJI = 1'0+1 

"'(• .fa, = 0.5(11+1 - .,.l),k1 = I, and k 2 = 1. With thue valuu, the i'lt. part of Ihe appro:£imoted
dependence function yield,

i5EP",(l, 1, T, lJ.) = P.(1;+1 -1i) + 0.50;..6.(r1+1 -11)

= ~ ((li(di+l - d i ) + O.5a;(dl+1 - drJ) + Qi(d, - doH)

in representation of eq. {2.3.3}

as polynomial (ef eq. (2.3.6)).

Expected value Now, with the approximated daily dependence function integral DEP; we are able
to determine the expected values by using the approaches OAT (2.1.6), EDDTl, and EDDT2 (2.1.7).
(1) For approach OAT, the arguments t and d in eq. (2.3.6) are replaced by their mean values M
and pO,. Analogously to eq. (2.1.6) we get

(2.3.8)

The number II and the values .tl and 1:2 depend on the position of M and PtJ. in the (1', fi)-plane
relatively to the actual values of d. and di+1 (cf. fig. 3&) and tab. 2). To obtain the total expected

values, the (E{DEP.J);>o have to be summed over all i, Le.

(2.3.9)

i5EP,(k"k"y,z) !iT(y) po(z)dy d,. -•
p.

(2) For approaches EDDTl and EDDT2 we substitute in eq. (2.1.7) the daily temperature dependence

integral DEP(T,fi) and the probability densities Pt(y) and ptJ.(z) by their approximations DEP;
(2.3.6), p,(y), and PtJ.(z) (2.2.3) and obtain

E[DEP,] '" 1:1: i5EP,(k, , k"y, z) !iT(y) dy po(z) dz. (2.3.10)

Because DEP. is different in the four areas 0",11::; 1, ... ,4 (cf. eq. (2.3.5» in the (T,.6.)-plane as
shown in fig. 3a), we now have to solve the resulting integral over each of these four domains. These
integration domains are furtherly bounded by the values P'!' ± 2u,!, and Ill!>. ± 200A (depending on l'
and .6.) which define the interval [Pr - 2oor , Pr +200rl where the approximation ofthe density functions
is f::. 0 (d. fig. Ic). Furthermore, the areas 0 1 and 0 4 are split by the line.6. = di+l - di t.o obtain
as integration boundaries of the inner integral continuous functions of the outer integration variable
z. The so resulting six integration domains 0 .. ,1{ = 1, ... ,6 are shown in fig. 3b). The resuJting
boundaries together with the values .t1 and .t2 are listed in tab. 3. For the approximation of the
expected value we get now
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• I•• I•• ,. I, • " "1 max(O,I-A) min(d;+1 d" ;.0.) max(d, .!,f-,) mined, + ';-, "r) 0 [

2 max(O, 1-.0.) min(d;+t - d" ;6.) max{dd .,.,f-,) min(d;+l - X.-i:r) 0 0
3 max(O,I-b,) minedi+ 1 - do, -iA) max(d;+1 - ~,I-1') min(di+l + T'~) 1 0
4 max(di +1 - dill-A) -i. max(d; - ~,hr) min(dd~, "r) 0 1
5 max(d;+! - dill-A) -i. max{d, + ~,f-,) min(di+l - I' -f.r) 1 1
6 max(di+l - dill-A) -i. maxld,+l - A,I-1'} rnin(d;+1 + -,-f.r) 1 0

Table 3: The integra.tion boundaries j.6..., 1.0.... , Jl',AI aDd 11-... lUld the values 1-1 and'" depend on the
inlcgralion domains 0 ... which are defined by tbe combination of 6 aDd T (d. fig. 3) and by the boundaries
of the pan.bola approximating the density fu.nctions of l' a.nd 0. (d. fig. Ie).
We use the ~breviation. ~4= /1.0. - g. tT6, --i.o.= PI:!. + 9' tTl:>. 1-1'= 111' - g. tTT. --ir = 1101' +g. 111'-

Thereby, the integrand P" is a polynomial of 4H\ order in y and of 3rd order in z because the density
function approximations hey) and Pa(z) (2.2.3) can be written as polynomials,

hey) = L:'.Y·-',
n=1

,
P.o.(z) = L Pm Zm -

1

m=l

with the coefficients

(
' -'!'L )"I,,,,, -~

(n EC,. = 2:t;~

4,";!;
and therefore we can write

(--'-- "')4'..... - 4'!~

pm E C... = 2:E;;.
4,~ ..~

P. M,(", '" Y, z)h(y)p. (,)

(t.t.~j,1(.".,)~-IZH)(f;.,.r') (t Pmzm-,)

.. L:'110
.• 11..· '._ "(' ') '+n-Z i+m - 3 d dL.J Cj,l,m,n "'I, "'2 Y z Y Z.

11=1 J....~ Jl'.~ i,l,m,n=1

(2.3.11)

This integral can be solved with some calculation effort, e.g. with the help of symholic calculation
software, because the integrand as well as the bounds of the inner integral are polynomials. An
example is given at the end of this section.
Summarized, the expected value of dep{T) is determined by summing the expected values of each of
the linear pieces of the dependence function. The expected value of the i'h linear piece is calculated by
first determining the thresholds d; and di+l of this piece. Then the integrals over each of the areas n..
have to be solved and summed. For each area, " determines the values k1 and k, and the integration
borders J.o.... , 1.0.,.. , J1'... , and 11',11 (cf. tab. 3). With the k·values, the coefficients ~,I(kl, .l:z) can now
be determined from matrix Co (2.3.7) and with this information, the double integral (2.3.11) can be
solved.
The following example explains this procedure for If. = 5.

EXlUDple 2.2 For the case It = 5, which corrnponds to fig. t.t, we get with d;+1 - do > Ji.o. - 9 -UA,
d;+ ~ > JJT-g'UT, and d;+l -, < JJT+g'UT, from ta6. 3 the values.l: l = 1, .l:z = 1, JA.6 = di+1 -dt,
1.0.,5 =JiA + g. tT.o., J1',5 =d; + ~ and 11'.5 = d;+1 -~. Bence the 51h part of eq. 1.3.11 is given 6y

{"lI.+'''. {d1+'- t
Es(DEP;] = Jd . Jd L: Cj,l,m,n(l, I)y'+n- 2zi+m- 3dy dz

dj+,-d, dl+t i,l,m,n
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o.

( - (, + ~ (-d,+' - d,) + ~ (-dl.. - d1) , +
, .

•
0,

3 Properties of Resulting Methods

Table 4 gives an overview of the eight different methods, which have been derived in this paper, with
respect to their temporal resolution, their data requirementa and the approximations they use.
The methods differ particularly in the way in which they use the information about the temperature
variability contained in the input data.
Method EDH lakes into account the intra daily variability by using hourly input data. Methods
EDDTl, EDHTI, EDDT2, EDBT2, and DAT extract the information about the intra daily variabil
ity from daily temperature amplitudes by assuming a triangle-shaped temperature course, which is
either used to estimate the statistical parameters of the hourly temperatures or to calculate the daily
dependence function and its expected value. For the case that only daily (method EDM) or even long
term means (method DA) are available, intra daily variability is neglected.

4 Discussion

In this paper I a range of new approaches for aggregating temperature dependence functions to longer
time periods bave been derived. The methods are constructed for a variety of input data resolutions
and allow tbe inclusion of temporal temperature variability in ecological models. Table 4 gives an
overview of these methods, their temporal resolution, input data needs and any approximations used.
Thus, an appropriate method now can be chosen ftom this set, depending on the available input data,
the needed aggregation period, and the necessary precision.
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Method Abbr. Ty"" Input data elfac:t Appro",~ aprmr.
Time reo Variables Statist"cal fonnula mation fonnula
5Olut;on parameten

:t:"'p«laLion value EDH E ho~ T IJT,"6 2.1.3 d<p 2.3.1
depende:nCf: function
of bourly tempera1Uftt1
:t:lfPeC:taUon value of EDHTl E day. ,, P'!',"'1', 2.1.3 dep, 2.3.1,
dependence function ~= 1'6,"6 TC 2.3.2
of 1I0urly temperatUfttl T",&s - T"" ..
appro",. by lrianlle
t.a.ed on mean and amplitude
~xpe<:lalionvalue of EuuTl E ...,.. ,. ~."1" 2.1.7 dep• 2.3.11
dependence function ~= 1'6,(16 TC,
of bourly temperature T",,,-,, -T.., ... NO
approx. by ,rianlle
bued on mean and amplilude
£xpectation value or EDHT2 E d"Y' ~- - 1'1'... ,,,1'... 2.1.3 dep, 2.3.1,
dependence function 1'mu tT "';R I'll., {II:> TC 2.3.2
of bourly tempetll.tlll'ell ~=

approx. by'rianlle T",,,s -Tm ;"

hued on extrema
I;xpectalion value or Eoon E day, ,- I'1'.. ,t1T... 2.1.7 d<p, 2.3.11

dependence function 1'",utT"'iD 1'6,"1:> TC,
or daily temperatuu ~= NO
,riansJe hued on T",..., - T",,"
extrema
ExpectaLion value of EDM E d"Y' T ~,ts6, 2.1.4 d•• 2.3.1
dependence function
of daily
temperature mean
Qepcndence runction 0.<' A =nUu ~,1'6 ~,I'6 2.1.6 dep, 2.3.8

of .veral" daily .ope TC
temperahu"e trian e

Qepe:ndence function of UA A month. 1'1' =I'T "T 2.1.1 d•• 1.1.1
6verall" te.mperatUl"e

Table 4: Ov~e"," over the tempera.tute dependence aggregation methods: They are divided according
to the type of method (explicit p;pedation value caleulation, or dependence function of !verage input), the
re80lutinn and kind of the needed input data (T: hourly temperature, T",,,,,,, T...;": daily temperature extrema,
6: daily temperature amplitude, 1': daily temperatlUe mean, T... : approximated daily temperature mean,
1'1': monthly mean temperature, tT: monthly mean ampli\ude), the lItatistic.u puameters estimated from
these data (1-1: mean and cT: Itandarddeviation) and the approrimations used (dep: dependence function, TC:
daily temperature courlle, ND: normal distribution). References to the (ormulae are given in columns uexa.cl
(ormula" and uapprox. formula". Note, the method DA is a widly used approach.

The main characteristics and differences of the methods are:
(1) Method EDD takes into account the intra daily variability by using hourly input data and hence
including the temperature variance. (2) Methods EDDTI, EDBTI, EDDT2, EDHT2, and DAT ex
tract the information about the intra daily variability from daily temperature amplitudes by assuming
It. triangle-shaped temperature course, which is either used to estimate the statisticaJ parameters of
the hourly temperatures or to calculate the daily dependence function and its expected value. (3)
Method EDM uses the inter-daily variability by the variances of daily mean temperatures, but neglects
the intra daily variability.
Thus, all of the presented approaches are able, to different extents, to include temporal temperature
variability, in contrast to the widely used application of the dependence function to (long term) tem
perature means (approach DA in tab. 4).

However, the new methods might have a certain bias allsmg from the used approximations and
assumptions. They assume the temperature variables to be normaUy distributed and temperature
mean and amplitude to be independent of each other, which is probably not always correct. The
assumption of a daily triangle temperature course similar to the triangulation method of Lindsey and
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Newman (1956), might also appear crude. However, physiological time calculated with this trianguJar
tion can be sufficiently precise, if the times of the daily temperature maxima are known, as shown for
the example of codling moth development (LISCHKE 1991). Thus for an adequate use of the triangle
approximation either the temperature maximum time is required for each day or a method which
calculates the daily dependence function based on the triangulation independently of this time.
The latter holds for the methods EDDTI and EDDT2, where the temperat.ure maximum time drops
out during the calculation of the daily temperature dependence. This could he an advantage over the
methods EDHTI and EDHT2 and alBoover thesine-sine-method of Allen (1976), because in their the
daily dependence approximation this time still appears, and hence has to be estimated e.g. to be at
noon.

To assess the effects of the aforementioned potential biases and the applicability of the presented
methods, the precision and efficiency of the mdhods have been tested (LISCHKE ET AL. 1995B) in
several ecological applications and compared to other common methods. The tesls revealed that it
can be crucial to use all available variability information dependent on the prec.ision requirements to
obtain satisfying results. Also, the approaches EDH, EDHTl, and EDHT2 combined high precision
with high speed on their respective levels of resolution. The effect of the bias introduced by assuming
the temperature maximum to occur at noon in EDHTI and EDHT2 turned out to be negligible.

The presented methods can be used in a. wide range of ecological models where variable abiotic
factors are affecting the dynamics, e.g. in pest prognosis models. They can be particularly useful
where dynamics which still depend on smaller time scale variations have to be simulated on large
time scales, as e.g. weather dependent. plant growth in dynamic vegetation models which are used to
assess the impact of climate change over centuries. For instance, the forest succession model FOR
CLIM reacts very sensitively (FISCHLlN ET AL. 1994) to whether the climate input is formulated as
constant input or by a stochastic weather generator on the monthly scale but runs for several hundred
years. Another example are models for t.he simulation of the forest carbon cycle as reviewed by Per
ruchoud and Fischlin (1995), which depend on temperature and run for even longer simulation peciods.

The construction of the approaches is not restricted to the specific approximations we presented
here, other ones could be chosen as e.g. quadratic polynomials for the daily temperature course,
exponential functions to approximate the temperature dependence function, or piecewise linear poly
nomials to approximate density functions. The latter could extend the range of applicability also to
other than normal distributions, even to empirical ones.
The approaches are also not restricted to dependence functions of temperature. The methods EDH
and EDM which do not assume a certain daily temperature course can also be applied to depen
dence functions of other abiotic factors, or more generally to tbe calculation of arbitrary functions of
normally distributed random variables. We used e.g. the method EDH successfully to calculate the
expected values of a nonlinear light dependence function in the forest dynamics model DlsCFoRM
(LISCHKE ET AL. 1995A).
The concept of approximating the daily temperature course, which is the basis of the methods OAT,
EORTl, EDHT2, EDOT1, and EDDT2 could he transferred to other periodicities, as e.g. inter
decadal temperature osc.iIIations (MANN ET A.L. 1995) or the yearly temperature course. This would
allow the estimation of long term dependence functions of monthly temperature means, given yearly
statistic parameters of extrema and means of daily or monthly temperature means.
The methods are even not restricted to temporal variability. It is possible to also apply them for
spatially varying input variables, e.g. during an spatial model upsc.aling.
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5 Conclusions

Now we have a variety of methods at hand, which can be applied to every temperature dependence
function by simple !iDearisation. They are suitable for different temperature input data resolutions,
e.g. minutely or hourly temperature, daily mean and daily amplitude, daily extrema, monthly mean
and monthly mean day-amplitude and monthly mean. With these methods it is possible to use as
much information about the variability in the input data as available through daily amplitudes or
standard deviations of hourly temperatures, and can be used for arbitrarily large time steps ranging
from days to millenia. Finally they can be applied to any kind of dependence function in many fields
of ecological modelling applications.
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A Overview of the used symbols

Table 5: Table of Symbols

Symbol

•
T(.)
T(.)
T
T... i ..

Tmtu

'rn~
6
.>p(T)
.>p(T)

"';(T)

d.

d;+1
E[X]
..(X)
.x(X)
ax (X)
;x(X)

( .. ,Pm
r.;
DEP
W;,.(k, ..... T. 6)

n
J.l

i = 1, ... ,m
v.'
a,p.;,
f~lph., !bU...
eJ,I(kl ,k2) E Co

Me;rning

time
temperature at time'

approrimation of temperature ;at time'
dUly temperilture a.veu.ge
duy minimum t.empe.ra.t~

dally miLXimum te.mpe:ratll!c
time of daily ma.ximum temperature
dUly tempen.ture amplitude
tempe.n.ture dependence function

approximAtion of tempua.ture dependence
function
a.pprorlmation for j'h lineu put of
tempen.ture dependence function

discretintioD of dcp{T) I lower tempera.lure

threshold of *p;(T}
upper tempu&ture threshold of ""',(T)
expected nlue of random nriable X
density (unction of random variable X
mcUl of random vuiable X
sta.ndarddeviation of ludom v;u1;t.ble X
approrim..tioD of deMity function of
random variwle X
coefficients of pr()') lUId PIl(") in polynomial form
boundaries of interval where px(:t') t- 0, X = 1', 6
da.ily temperaJure dependence function integral
da.ily integral over i l h linear pa.rt of a.ppro
xima.tion of tempera.ture dependence function
integration uea
inlegra.tion boundaries
due to po5ition of T",;n iUld T",..,.
relatively lo d; iUld d;+l
index of dependence funelion discretization
indices of subintegrals iUld integn.tion areu
varia.bles used for substitution

coefficients of m;(kl ... ,k2 ... ) in polynomial form
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·C
·C
·C
·c
day.
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