Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ECO-BOND GRAPHS

An Energy-Based Modeling and Simulation Framework for Complex Dynamic Systems

with a focus on Sustainability and Embodied Energy Flows

Dr. Rodrigo Castro

ETH Zürich, Switzerland. University of Buenos Aires & CIFASIS-CONICET, Argentina.

International Multidisciplinary Modelling & Simulation Multiconference

The 1st Int'l. Workshop on Simulation for Energy, Sustainable Development & Environment

- Problem formulation
	- Emergy tracking & Complex Dynamics Systems
- Possible approaches
- Our approach
	- Networked Complex Processes
	- 3-faceted representation of energy flows
- The Bond Graph formalism
- The new Eco Bond Graphs
	- Definition
	- Examples
	- Simulation results
- Conclusions

Problem formulation

• Complex Dynamics Systems – Global scale socio-natural processes

- Complex Dynamics Systems
	- Global scale socio-natural processes
		- We live in a nonlinear world, mostly away from equilibrium

- Complex Dynamics Systems
	- Global scale socio-natural processes
		- We live in a nonlinear world, mostly away from equilibrium

- Complex Dynamics Systems
	- Global scale socio-natural processes
		- We live in a nonlinear world, mostly away from equilibrium

• Flows of Mass and Energy

• Flows of Mass and Energy

– Each process can abstract several internal sub processes

– We want to model **systematically** this type of systems

 $-$ Structural approach \blacktriangleright Sustainability properties

Considering energy losses **Possible approaches**

• Sankey Diagrams

– Static (snapshot-like) World Energy Flow.

Considering energy losses **Possible approaches**

Possible approaches

• Energy System Language (H.T. Odum)

– Account for dynamics \blacktriangleright Differential Eqns.

Possible approaches

• Energy System Language (H.T. Odum) – Account for dynamics \blacktriangleright Differential Eqns. U Χ a Rair Ng ınof Vate Tide 4 Detritus Sun arvae Winc Mangrove -Yield Kэ $R₂$ Net Prod LAGOON

Dr. Rodrigo Castro 13M–SESDE 2013. Athens, Greece . September 27, 2013. 16

Possible approaches

• Energy System Language (H.T. Odum) – Account for dynamics \blacktriangleright Differential Eqns. U Χ a Rain Ng unoff Vate Tide. 4 Detritus Sun arvae Wind Mangrove Yield| Kэ $R₂$ Net Prod LAGOON **Dr. Rodrigo Castro 13M–SESDE 2013. Athens, Greece . September 27, 2013.** 17

Possible approaches

Networked processes

Our approach

- Multi Input/Multi Output Processes
	- Including recycling paths

Networked processes

- **Our approach**
- Multi Input/Multi Output Processes – Including recycling paths

Networked processes

Our approach

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 21

Our approach

• 3-Faceted representation

Our approach

Our approach

Our approach

• 3-Faceted representation

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 25

Basic formulation **Dunner Contract Contrac**

- Minimum required formulation
	- To achieve the modeling goal systematically

• How do we formalize and generalize this structure ?

- Bondgraph is a graphical modeling technique
	- Rooted in the tracking of power [Joules/sec=Watt]
	- Represented by effort variables (e) and flow variables (f)

$$
\frac{e}{f}
$$

$$
\begin{array}{c}\n e \\
f\n \end{array}
$$
 Power = e \cdot f

e: Effort f: Flow

- Bondgraph is a graphical modeling technique
	- Rooted in the tracking of power [Joules/sec=Watt]
	- Represented by effort variables (e) and flow variables (f)

$$
e
$$

\n f
\n f

- **Goal:**
	- Sound physical modeling of generalized flows of energy
	- Self checking capabilities for thermodynamic feasibility
- **Strategy**:
	- Bondgraphic modeling of phenomenological processes
	- Including emergy tracking capabilities

Energy domains

The Bond Graph Formalism

• Bondgraph is multi-energy domain

Energy domains

The Bond Graph Formalism

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 30

- As every bond defines two **separate variables**
	- The *effort e* and the *flow f*
	- We need two equations to compute values for these two variables
- It is always possible to compute one of the two variables at each side of the bond.

- As every bond defines two **separate variables**
	- The *effort e* and the *flow f*
	- We need two equations to compute values for these two variables
- It is always possible to compute one of the two variables at each side of the bond.
- A *vertical bar* symbolizes the side where the *flow* is being computed.

$$
\frac{e}{f}
$$

Junctions **The Bond Graph Formalism**

• Local balances of energy

Junctions **The Bond Graph Formalism**

• Local balances of energy

Junctions of type 0 have only one flow equation, and therefore, they must have exactly one causality bar.

Junctions **The Bond Graph Formalism**

• Local balances of energy

Junctions of type 0 have only one flow equation, and therefore, they must have exactly one causality bar.

Junctions of type 1 have only one effort equation, and therefore, they must have exactly (n-1) causality bars.

Example I **The Bond Graph Formalism**

• An electrical energy domain model

Electrical Circuit

• An electrical energy domain model

Resistor İL \triangle i₀ иL U_1 R_1 **Inductor** $R₂$ U_0 **Resistor**Ιc $U₂$ **Voltage Source** u_C **Capacitor**

Electrical Circuit

• An electrical energy domain model

- A multi-energy domain model
	- **Electricity**
	- **Mechanical rotational**
	- **Mechanical translational**
- Special elements such as **Gyrator** and **Transformer**

convert energy flows across diff. physical domains

DC motor

- A multi-energy domain model
	- **Electricity**
	- **Mechanical rotational**
	- **Mechanical translational**
- Special elements such as **Gyrator** and **Transformer**

convert energy flows across diff. physical domains

DC motor

- A multi-energy domain model
	- **Electricity**
	- **Mechanical rotational**
	- **Mechanical translational**
- Special elements such as **Gyrator** and **Transformer**

DC

convert energy flows across diff. physical domains

- Bond Graph variables for Complex Systems
	- **Facets 1 and 2**
		- Power variables:
			- **Specific Enthalpy** [J/kg] (an *effort variable*)
			- **Mass Flow** [kg/sec] (a *flow variable*).

 $[J/sec] = [J/kg] \cdot [kg/sec]$ represents power

- Information variable
	- **Mass** [Kg] (a *state* variable)
- **Facet 3** (the e*m*ergy facet)
	- Information variable
		- **Specific E***m***ergy** [J/kg] (a *structural* variable)
		- [J/sec] = [J/kg] · [kg/sec] also denotes power

EcoBG

- Bond Graph variables for Complex Systems
	- **Facets 1 and 2**
		- Power variables:
			- **Specific Enthalpy** [J/kg] (an *effort variable*)
			- **Mass Flow** [kg/sec] (a *flow variable*).

 $[J/sec] = [J/kg] \cdot [kg/sec]$ represents power

- Information variable
	- **Mass** [Kg] (a *state* variable)
- **Facet 3** (the e*m*ergy facet)
	- Information variable
		- **Specific E***m***ergy** [J/kg] (a *structural* variable)
		- [J/sec] = [J/kg] · [kg/sec] also denotes power

EcoBG \emph{em}

- Bond Graph variables for Complex Systems
	- **Facets 1 and 2**
		- Power variables:
			- **Specific Enthalpy** [J/kg] (an *effort variable*)
			- **Mass Flow** [kg/sec] (a *flow variable*).
			- $[J/sec] = [J/kg] \cdot [kg/sec]$ represents power
		- Information variable
			- **Mass** [Kg] (a *state* variable)
	- **Facet 3** (the e*m*ergy facet)
		- Information variable
			- **Specific E***m***ergy** [J/kg] (a *structural* variable)
			- [J/sec] = [J/kg] · [kg/sec] also denotes power

- Bond Graph variables for Complex Systems
	- **Facets 1 and 2**
		- Power variables:
			- **Specific Enthalpy** [J/kg] (an *effort variable*)
			- **Mass Flow** [kg/sec] (a *flow variable*).
			- $[J/sec] = [J/kg] \cdot [kg/sec]$ represents power
		- Information variable
			- **Mass** [Kg] (a *state* variable)
	- **Facet 3** (the e*m*ergy facet)
		- Information variable
			- **Specific E***m***ergy** [J/kg] (a *structural* variable)
			- [J/sec] = [J/kg] · [kg/sec] also denotes power

- Bond Graph variables for Complex Systems
	- **Facets 1 and 2**
		- Power variables:
			- **Specific Enthalpy** [J/kg] (an *effort variable*)
			- **Mass Flow** [kg/sec] (a *flow variable*).
			- $[J/sec] = [J/kg] \cdot [kg/sec]$ represents power
		- Information variable
			- **Mass** [Kg] (a *state* variable)
	- **Facet 3** (the e*m*ergy facet)
		- Information variable
			- **Specific E***m***ergy** [J/kg] (a *structural* variable)
			- [J/sec] = [J/kg] · [kg/sec] also denotes power

EcoBG

Accumulators

- The EcoBG Storage element
	- A **C**apacitive **Field** (**CF**) accumulates more than one quantity: Enthalpy, Mass and Emergy

a property of the accumulated mass Known in advance -> A parameter

Junctions

Eco Bond Graphs

• The EcoBG 0-Junction

Reusable structures

- Basic unit based on EcoBG elements – An important "building block"
- Storage of mass and energy adhering to the proposed 1. H. E.N **3-Faceted approach:** $\bm{C}\bm{F}$ h

Modeling processes

Eco Bond Graphs

• EcoBG **Process** elements

Modeling processes

Eco Bond Graphs

• EcoBG **Process** elements

• EcoBG **Process** elements

Example

Extraction of renewable resources for consumption

Example

Extraction of renewable resources for consumption

• EcoBG library implemented in the Dymola® tool.

• EcoBG library implemented in the Dymola® tool.

The **Mass** Layer **Eco Bond Graphs**

$$
\begin{aligned}\n\dot{M}_a &= \dot{M}_r - K_s \dot{M}_a \dot{M}_c \\
\dot{M}_c &= K_s \dot{M}_a \dot{M}_c - K_s^{\text{irr}} \dot{M}_c - \dot{M}_d\n\end{aligned}
$$

The **Mass** Layer **Eco Bond Graphs**

$$
\begin{aligned}\n\dot{M}_a &= \dot{M}_r - K_s \dot{M}_a \dot{M}_c \\
\dot{M}_c &= K_s \dot{M}_a \dot{M}_c - K_s^{\text{irr}} \dot{M}_c - \dot{M}_d\n\end{aligned}
$$

The **Mass** Layer **Eco Bond Graphs**

$$
\overrightarrow{M}_{a} = \frac{\dot{M}_{r} - K_{s} M_{a} M_{c}}{\dot{M}_{c} = \frac{K_{s} M_{a} M_{c} - K_{s}^{\text{irr}} M_{c} - \dot{M}_{d}}
$$

The **Mass** Layer **Eco Bond Graphs**

$$
\overrightarrow{M}_{a} = \frac{\dot{M}_{r} - K_{s} M_{a} M_{c}}{\dot{M}_{c} = \frac{K_{s} M_{a} M_{c} - K_{s}^{irr} M_{c} - \dot{M}_{d}}
$$

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 74

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 80

Simulation results **Eco Bond Graphs**

• Accumulated quantities (Deposit and Reservoir)

Simulation results **Eco Bond Graphs**

Experiment: Rain flow reduced 4x. Results for Reservoir.

Conclusions

- Eco Bond Graphs
	- A new "Plumbing Technology" for modeling Complex Dynamics Systems
	- A low-level tool to equip other higher-level modeling formalisms
		- with the ability to track e*m*ergy flows
- Hierarchical interconnection of EcoBG subsystems
	- Automatic and systematic evaluation of sustainability:
		- global tracking of e*m*ergy and
		- local checking of energy balances
- M&S practice
	- The laws of thermodynamics are not an opinable subject
		- Every sustainability-oriented effort should -at some point- consider e*m*ergy
- We should become able to **inform** both:
	- decision makers (experts, politicians, corporations) and
	- people who express their wishes (democratic societies)
	- about which are the **feasible** physical boundaries
		- within which their -largely opinable- desires and/or plans can be **possibly implemented in a sustainable fashion**.

Thanks for your attention !

rodrigo.castro@usys.ethz.ch [rodrigo.castro@cifasis-conicet.gov.ar](mailto:rcastro@dc.uba.ar) rcastro@dc.uba.ar

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 84