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Abstract

Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use el
rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing
shifting cooling-related thermal loads either by precooling the building’s massive structure or by using active thermal energy storag
such as ice storage. While these two thermal batteries have been engaged separately in the past, this paper investigates the merits
both storage media concurrently in the context of optimal control. The objective function is the total utility bill including the cost of
and a time-of-use electricity rate without demand charges. The evaluation of the combined optimal control assumes perfect weathe
and plant modeling, which justifies the application of a consecutive time block optimization that optimizes 24 hour horizons sequent
analysis shows that the combined utilization leads to cost savings that is significantly greater than either storage but less than the
individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be drasticall
and justify the development of a predictive optimal controller that accounts for uncertainty in predicted variables and modeling mis
real time.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

The equipment and systems providing thermal com
and indoor air quality for commercial buildings consum
42% of the total energy used in buildings [1]. Energy u
and utility cost can be reduced significantly by increasing
efficiency of this equipment, by distributing thermal ene
more efficiently and by more closely meeting the need
building occupants. The energy efficiency of system com
nents for heating, ventilating, and air-conditioning (HVA
has improved considerably over the past 20 years. Fo
ample, shipment-weighted energy efficiency ratios of u
tary air conditioners in the United States have increase
54% [2]. The average efficiency of centrifugal chillers im
proved by 36% and the efficiency of the best chillers
creased by 50% [3]. With similar improvements in the
ficiencies of boilers, motors, fans, and pumps, outstan
opportunities exist for reducing energy use and cost in c
mercial sites. Yet, these opportunities depend on effec
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E-mail address: ghenze@unl.edu (G.P. Henze).
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building operations: e.g., a building with coincident heat
and cooling due to inferior control loop parameters was
energy regardless of boiler and chiller efficiency.

In contrast to energy conversion equipment, less
provement has been achieved in thermal energy distribu
storage and control systems in terms of energy efficie
and peak load reduction potential. Advancements are
needed to improve thermal storage systems, improve
trol systems and improve systems integration from a wh
building perspective while meeting occupant comfort a
performance requirements [4]. This paper illustrates som
the recent advancements toward these goals. In the defin
of this article, ‘active’ denotes that thermal storage syste
such as ice storage, require an additional fluid loop to ch
and discharge the storage tank or to deliver cooling to
existing chilled water loop. Building thermal capacitance
‘passive’ since it requires no additional heat exchange fl
in addition to the conditioned air stream.

This paper evaluates the merits of combined optimal c
trol of both passive building thermal capacitanceand ac-
tive thermal energy storage systems to minimize an ob
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tive function of choice including total energy consumptio
energy cost, occupant discomfort, or a combination of th

Instead of merely satisfying instantaneous building co
ing requirements, both active and passive storage invent
can be effectively harnessed in the framework of supervis
control:

(a) To exploit the performance benefits of cooler amb
conditions during nighttime for central chilled wat
plants, allowing for optimal scheduling of chiller
cooling towers, fans and pumps;

(b) To shape the next day’s cooling load profile by p
cooling the building’s massive structure at night;

(c) To make best possible use of the cost savings pote
offered by conventional time-of-use and dynamic util
rate structures, including real-time pricing options t
are offered by an increasing number of utilities.

Several investigators have identified promising savings
tentials when building operation has been optimized
buildings without storage [5–10]. Moreover, recent ana
ses suggest significant performance merits fromeither ac-
tive [11–21]or passive [22–33] thermal storage invento
under optimal control.

The combined use of both storage media under optim
control has been investigated for a 24-hour determin
simulation study which revealed that significant operat
cost savings (∼18%) and electrical demand reduction c
be achieved [34]. Optimal building control proved mo
effective in dry climates with large diurnal temperatu
swings, in the presence of utility rates strongly encourag
load-shifting, and when cool storage systems allow m
effective load-shifting than building precooling alone. The
results suggest the investigation of combined optimal sto
utilization facilitated by a predictive supervisory control
suitable for implementation in commercial buildings. Th
paper lays the groundwork for such a closed-loop mo
based predictive optimal controller by investigating
overall solution approach that can be employed in real ti

Two essential assumptions are applied:

(a) Weather, occupancy, non-cooling electrical loads
perfectly predicted.

(b) The building thermal response is perfectly represen
by the building model, i.e., there is no mismat
between the modeled and actual building behavior.

Given these assumptions, closed-loop optimal control is
necessary here as updated forecasts do not offer sup
information and a consecutive time block optimizati
approach (described further below) is applied instead.
evaluation of the potential utility cost savings for a wi
range of parameters will be documented in a future artic
l

r

2. Description of the analysis

2.1. Investigated building

We investigate a three-story office building as shown
Fig. 1 with five thermal zones per floor, i.e., 15 thermal zo
in total. The perimeter zones have an area of 288 m2 each,
while the core zone has an area of 576 m2. Total area per
floor is thus 1 728 m2 and the building total is 5 184 m2.
Counting the exterior envelope, floor, and ceiling surfac
the building mass is approximately 770 kg·m−2 of floor area,
thus can be considered heavy-weight construction.

Peak building occupancy is 10 m2·person−1. Each office
worker contributes 132 W of internal gain, where 54%
assumed to be sensible and 46% latent. Peak lighting de
is 20 W·m−2. The occupancy and lighting schedules fo
weekday are shown in Fig. 2, where hour 13 refers to
hour from 12 to 13. On weekends and holidays build
occupancy is zero and lighting density is 5% of the p
value.

The office building was first modeled in EnergyPlus [3
and subsequently a TRNSYS [36] model was derived
validated. For a series of identical days (July 21 in Phoe
Arizona from TMY2 weather data), good agreement
the zone temperature and cooling load profiles for b
dynamic simulation programs was achieved. Subseq

Fig. 1. Plan view of office building.

Fig. 2. Weekday occupancy and lighting schedule.
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annual analysis revealed a building design cooling load
470 kW.

The building is equipped with a central chilled wa
plant with a capacity ofCCAPbase= 250 kW including a
thermal energy storage system with a capacity ofSCAP =
2 500 kWh and a second dedicated chiller with a capacit
CCAPTES= 250 kW. Thus, the base chiller is downsized
47% and the active TES tank can meet the peak load a
for 5.3 hours. The base chiller has a constant coeffici
of-performance (COP) of 4.5 and the dedicated TES ch
has constant COP of 3.0. The zones are conditioned u
a variable air volume (VAV) air-handling unit with ho
water reheat at the VAV terminal boxes. Outside air int
is controlled by an economizer cycle using return
temperature limit.

2.2. Base case

We will state cost savings relative to a “base cas
which is a chilled water system that experiences the s
cooling load and weather profiles and uses the same H
systems subject to the same utility rate structure as
corresponding optimized storage system. The active
system is governed by the chiller-priority control strate
i.e., the base chiller is used to serve the building cooling l
up to its capacityCCAPbase, while the active storage is use
to meet the cooling loads exceedingCCAPbase. The passive
building thermal storage inventory is not utilized: Duri
occupancy, a cooling zone setpoint of 24◦C and a heating
setpoint of 20◦C is maintained; during unoccupied time
the HVAC systems are turned off and the temperatures
allowed to float.

The performance metric for all cases is the total uti
cost for operating the office building over a selected ti
horizon, which includes electricity and heating costs. T
electrical utility rate structures includes time-of-use diff
entiated energy charges ($·kWh−1), while the utility rate for
purchased heating is considered constant.

2.3. Passive thermal storage system modeling

The building structure responds to changes in zone t
perature setpointsTZ,SP. The zone temperatureTZ is directly
affected only by the net convective heat flux according to
discrete-time energy balance on the zone air mass

CZ
�TZ

�t
=

∑
i

Q̇conv,i (1)

whereCZ is the zone thermal capacitance. These con
tive heat fluxes include contributions from interior wall su
faces due to transmission and delayed release of solar g
HVAC systems, internal gains, as well as infiltration.
those, the current interior wall surfaces fluxes depend
history of past inside and outside air and surface temp
tures as well as inside and outside heat fluxes. The tran
,

t

response of the building envelope is typically modeled
transforming the heat diffusion equation

∂TZ

∂t
= α∂

2TZ

∂x2 (2)

(where α is the thermal diffusivity) into a conductio
transfer function (CTF), where the inside and outside sur
heat fluxes are determined with the help of construct
specific CTF coefficientsa, b, c, andd .

q̇s,o =
na∑
k=0

akTs,o,t−k�t −
nb∑
k=0

bkTs,i,t−k�t

−
nd∑
k=1

dkq̇s,o,t−k�t

q̇s,i =
nb∑
k=0

bkTs,o,t−k�t −
nc∑
k=0

ckTs,i,t−k�t

−
nd∑
k=1

dkq̇s,i,t−k�t

(3)

The zone temperature setpoints can be varied betw
15 and 30◦C during unoccupied periods and between
and 24◦C during occupied periods. Building precoolin
reduces the convective contributions from inside surfa
during occupied periods by depressing the average enve
temperature during unoccupied periods.

2.4. Active thermal storage system modeling

The defining feature of any storage system is its abilit
bridge a temporal gap between supply and demand. In a
tive thermal energy storage system, the temporal occurr
of electrical cooling-related loads can be separated from
of the thermal (cooling) loads. Fig. 3 shows that the build
cooling load can be met by any combination of contributio
from the base chiller and the active TES system, while
dedicated TES chiller only serves to charge the active T

Changes in the state-of-chargex of the active TES system
are described in discrete time by

xk+1 = xk + uk (4)

subject to the state constraints

xmin = 0 � x � xmax= 1 (5)

Fig. 3. Central chilled water plant configuration.
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Table 1
Modes of operation of chilled water plant

Mode Mode TES charge/discharge rate Consequence

PM1 Discharging u� 0 Q̇dis = u SCAP
�t ; Q̇ch = 0; Q̇base= Q̇L − Q̇dis

PM2 Charging u > 0 Q̇dis = 0; Q̇ch = u SCAP
�t ; Q̇base= Q̇L
rate
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whereuk is the dimensionless TES charge/discharge
subject to its own nonlinear constraints

umin,k � uk � umax,k (6)

The charge and discharge capacities depend on the ava
thermal energy storage inventory and current cooling lo
The constraints on the control variableu are formulated as

umin,k = max

{
−Q̇L,k �t

SCAP
, xmin − xk

}
(7)

and

umax,k = min

{
CCAPTES

�t

SCAP
, xmax− xk

}
(8)

Thus, no actions can be taken that would lead to state
charge outside feasible limits, i.e., full and empty stor
tank, respectively. Further, no more than the current load
be discharged and the TES chiller capacityCCAPTES limits
the maximum charge rateumax,k . There is no explicit ice o
chilled-water tank model and heat transfer limitations on
charging and discharging rates are not considered, i.e
assume an idealized loss-free thermal battery.

Depending on the current cooling load, a choice of ac
TES charging/discharging rateu determines the mode o
operation of the central chilled water plant as shown
Table 1.

2.5. Optimal control modeling

2.5.1. Monthly cost function
Optimal control is defined as that control trajectory t

minimizes the total monthly utility billCm for electricity and
heating:

Jm = minCm = min
{
Celec,m +Cheat,m

}
, where

Celec,m = Cenergy,m +Cdemand,m =
Km∑
k=1

re,kPk�th

+ max
1�k�Km

{
rd,kPk

}

Cheat,m =
Km∑
k=1

rhQ̇head,k�th

(9)

where re,k and rd,k are the energy and demand rates
electricity according to the utility tariff in effect for tim
k,Km is the number of hours in the current month,Pk is
the total facility electricity demand,�th is a time incremen
of one hour,rh is the unit cost of heat delivered, anḋQheat,k
is the heating demand in hourk. For the analysis presente
here, load-shifting to off-peak hours is encouraged o
e

through a substantial energy rate differential; demand r
are not considered and the cost function simplifies to

Jm = minCm = min
{
Cenergy,m +Cheat,m

}
(10)

2.5.2. Consecutive time block optimization
Consecutive time block optimization (CTBO) is em

ployed, i.e., the predictive optimal controller carries out
optimization over a predefined planning horizonL and the
complete generated optimal strategy is executed. At any
k∗ , the required external variables (such as weather infor
tion) are predicted over a planning horizonL and the optima
policy that minimizesJL is determined. The complete stra
egy is executed without correcting for improved foreca
available duringk∗ < k < k∗ + L. After L time step the
process is repeated. The planning horizon isL = 24 hours
throughout this study.

The alternative approach is closed-loop optimizat
(CLO), i.e., the predictive optimal controller carries out
optimization over a predefined planning horizonL and of the
generated optimal strategy only the first action is execu
At the next time step the process is repeated. The
control strategy of this near-optimal controller over a to
horizon ofK steps is thus composed ofK initial control
actions ofK optimal strategies of horizonL, whereL<K.
By moving the time window ofL time steps forward an
updating the control strategy after each time step, a
forecast is introduced at each time step and yields a po
which is different from the policy found without taking ne
forecasts into account.

In the limiting case of perfect forecasts, both CLO a
CTBO can be expected to produce identical results. W
the future is subject to uncertainty, i.e., in the case
an actual implementation, CLO-based predictive optim
control is expected to exhibit superior performance. Si
the focal point of this paper is to identify the relati
performance of jointly optimizing the active and pass
building thermal storage, we assume perfect predictions
use CTBO.

The optimal solutionJL found at current timek∗ is
associated withL global temperature setpoints{TZ,SP}k∗+Lk∗
andL active TES charge/discharge rates{u}k∗+Lk∗ .

2.5.3. Sequential optimization and building modes
The cost of electrical energyCenergy,L is affected by both

the active and passive building thermal storage strategy.
choice of zone temperature setpoints will affect the coo
load, which has to be known for the active storage to
controlled properly. Therefore, there is a causal relation
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Fig. 4. (a) Simplified stepped optimization for passive storage and, (b) Active storage optimization.
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from the passive to the active storage, which requires u
solve the passive storage first, followed by the optimiza
of the active thermal storage inventory on the basis of
previously determined optimal building cooling load profi

Due to the presence of simple upper and lower z
temperature bounds, the passive thermal storage (bui
mass) component of the control problem proved to be so
effectively with the help of a common implementation of t
quasi-Newton method, which is described below. The
of a direct search method (Nelder–Mead Simplex) led to
excessive number of function evaluations (TRNSYS ru
because of cost penalties arising from bound violatio
To reduce the numerical complexity of the passive stor
optimization problem, a simplification is introduced: Inste
of optimizing L variables, only one global zone setpo
TZ,SP is determined for each combination of occupan
(occupied, unoccupied) and utility rate periods (on-pe
off-peak), defined as building mode (BM), occurring ov
the nextL time steps

BM1: Unoccupied and off-peak rates;
BM2: Unoccupied and on-peak rates;
BM3: Occupied and off-peak rates;
BM4: Occupied and on-peak rates.

During each building mode, the corresponding con
variable is kept constant as shown in Fig. 4(a). Since th
few variables describe stepped profiles for each con
variable, we denote them assolution parameters SP. For
the given occupancy and utility rate periods and assum
hourly time steps, the solution space for anL = 24 hour
horizon is reduced from 24 dimensions to 5 dimensions.
any horizonL, the number of parameters can increase
decrease depending on how many distinct occupancy
rate periods are covered. Though this simplification cau
the solution to become slightly suboptimal compared to
full solution, the problem now becomes computationa
tractable.

The active storage (TES) optimization problem is ch
acterized by complex and nonlinear constraints as expre
by Eqs. (7) and (8), yet simple state transitions as chara
ized by Eq. (4). This class of problem is most readily solv
using dynamic programming, which is described below,
yieldsL solution variables as shown in Fig. 4(b).
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Fig. 5. Iterative sequential optimization of utility costCL.
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2.5.4. Iterative sequential optimization
Fig. 5 illustrates how the least utility costJL over horizon

L is determined. At time zero and starting with initi
zone temperature setpoints{TZ,SP}init halfway between the
upper and lower bounds and no active storage utiliza
{u}init = 0 the passive storage inventory is optimized
minimize CL. As a result, the optimal building coolin
load profile is computed and handed over to the ac
storage optimization, which calculates an optimal T
charge/discharge strategy. In a second pass, the op
active storage utilization strategy and the previously fo
optimal zone temperature setpoint profile are employe
determine the new optimal zone temperature setpoint pr
and optimal utility costJL. This cycle is repeated unt
the optimal costJL converges. Typically, convergence
attained after 2–3 iterations. Previously optimal solutio
are stored as starting values for subsequent optimizatio
reduce execution time.

2.6. Optimization algorithms

We investigate two classes of optimization algorithms
quasi-Newton method, which approximates the function g
dient through finite differences, and dynamic programm
for sequential decision making problems. Among th
methods that utilize gradient information, quasi-New
methods are the most popular. They collect curvature in
mation on the cost function at each iteration to describ
quadratic model problem

min
x

{
1

2
xTHx + cTx + b

}
(11)

where the Hessian matrix,H , is a positive definite symme
ric matrix, c is a constant vector, andb is a constant. The
optimal solutionx∗ occurs when the partial derivatives ofx
vanish, i.e.,

∇f (x∗)=Hx∗ + c= 0 �⇒ x∗ = −H−1c (12)

Newton-type methods calculate the HessianH directly,
which is numerically very demanding. Quasi-Newton me
ods avoid the direct computation of the Hessian by extr
ing curvature information from observed behaviorf (x) and
∇f (x) and subsequently approximating the Hessian num
l

ically [37]. We employ the popular method by Broyde
Fletcher, Goldfarb, and Shanno (BFGS):

Hi+1 =Hi + qiq
T
i

qT
i si

− HT
i s

T
i siHi

sTi Hisi
(13)

where si = xi+1 − xi and qi = ∇f (xi+1) − ∇f (xi). In
the presented case, the gradient information is derive
partial derivatives using numerical differentiation via fin
differences: Each decision variablex is perturbed and th
rate of change in the cost function is determined. The
each iterationi, a line search is performed in the direction

d = −H−1
i · ∇f (xi) (14)

The task of minimizing operating cost using active therm
storage inventory is framed as a sequential decision-ma
process of decision variableu. The optimization techniqu
dynamic programming commonly used for this type of prob
lems was first formally introduced by the mathematic
Richard Bellman in 1957. Bellman’sPrinciple of Optimal-
ity [38] states that:

“An optimal policy has the property that whatever the i
tial state and initial decision are, the remaining decisi
must constitute an optimal policy with regard to the st
resulting from the first decision.”

In other words, the optimal solution to anL-step process
must come from the optimal solution of anL − 1-step
process that is based on the optimal outcome of the
step. The solution of oneL-step process will thus be foun
recursively by optimizingL single-step processes in rever
time by starting at the end of time and moving back
“now”. To apply, the cost function has to be incrementa
additive and the dynamic system has to be discrete.

3. Results

The utility rate is assumed to be $0.20·kWh−1 on-peak
and $0.05·kWh−1 off-peak; no demand charge is levied. T
on-peak period is weekdays from 9 AM to 6 PM, off-pe
all remaining hours. The building is occupied from 7 AM
5 PM.

The viewgraphs in this section are created on the bas
simulations in which July 21 in Phoenix, AZ is repeated o
and over again until steady-state conditions are attained
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Table 2
System sizing for investigated control strategies

Case No. Optimization Units Sizing

1 Base case WITHOUT active storage
CCAPbase kW 500
CCAPtes kW 0
SCAP kWh 0

Base chiller fully sized, no active
storage; night setup

2 Base case WITH active storage
CCAPbase kW 250
CCAPtes kW 250
SCAP kWh 2 500

Base chiller downsized; chiller-
priority active storage control;
night setup

3 Passive-only
CCAPbase kW 500
CCAPtes kW 0
SCAP kWh 0

Base chiller fully sized, no active
storage; zone setpoints optimize

4 Active-only
CCAPbase kW 500
CCAPtes kW 250
SCAP kWh 2 500

Base chiller fully sized, optimal
active storage control; night setu

5 Active and passive
CCAPbase kW 500
CCAPtes kW 250
SCAP kWh 2 500

Base chiller fully sized, optimal
active storage control; zone
setpoints optimized
about 7 identical days. The outdoor ambient tempera
swings from about 16◦C early in the morning to over 38◦C
at 6 PM. Table 2 lists the nominal capacities of the b
chiller and the active storage and chiller capacities for
five investigated cases.

Case 1 represents the base case in which cooling l
have to be met without any storage available. Cas
makes use of active thermal storage as governed by ch
priority control, i.e., the downsized base chiller meets
cooling loads up to its capacityCCAPbase, thereafter the
active storage contributes the remainder. The dedic
active storage chiller requiresSCAP/CCAPtes = 10 hours
to recharge an empty storage tank. Case 3 optimizes
passive storage capacity by properly precooling the build
structure using a fully sized base chiller. In case 4, the ac
storage is now optimized instead of governed by a sim
rule such as chiller-priority. Finally, case 5 optimizes b
active and passive storage media and represents the foc
this research.

Case 5 is solved by optimizing each 24 hour inter
sequentially, i.e., as a series of consecutive time blo
(CTBO) of 24 hours length each. The CTBO method d
not allow for the consideration of newly available ne
information as it becomes available. However, it repres
a reference scenario for comparison as we assume pe
prediction for this study.

The thick lines in Fig. 6 represent the upper and low
temperature bounds for the operation of the office bu
ing on a weekday. It can be seen how passive-only con
decides on substantial nighttime precooling down to ab
21◦C zone temperature averaged over all 15 zones. W
the temperatures are allowed to float, the average zone
perature rises beyond 28◦C during unoccupied times. Th
Fig. 6. Average zone temperature profiles.
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Fig. 7. Active storage state-of-charge profiles.

Fig. 8. Building cooling load profiles.
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combined utilization of active and passive storage lead
less precooling than in the passive-only case. All strate
involving passive storage allow for the temperatures to fl
from the end of occupancy at 5 PM to 6 PM because e
tricity prices are still high (on-peak) during this time. Aft
6 PM, electricity prices are low and the building is unoc
pied.

The inventory of the active storage is shown in Fig
from midnight to midnight for those strategies involvin
active storage. For the base case with active storage u
chiller-priority control, the storage is fully charged duri
off-peak hours and discharged by about 50% during the
The active-only optimization discharges fast as of 8 AM,
slows down during the early afternoon hours to end up em
r

by the end of occupancy. The combined storage utiliza
approach makes less use of the active storage.

Fig. 8 illustrates the effect of precooling on the dayti
cooling load profile and shows how the building cooli
load is shifted away from the expensive on-peak perio
the off-peak period for all cases involving passive stor
utilization. The passive-only approach leads to the low
on-peak cooling loads, next comes the CTBO approac
the combined case.

Reducing on-peak electrical demand is a side effec
shifting expensive on-peak cooling loads to off-peak peri
for energy-only optimizations as can be seen in Fig
While the base case with active storage under chiller-prio
control already reduces the demand by 20%, the comb
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Fig. 9. Total building electrical demand profiles.

Fig. 10. Total hourly building operating cost profiles.
2

Table 3
Summary of daily operating costs

Total building operating cost

Base case without TES Base case with TES Passive-only Active-only Active+ Passive CTBO
$347.42 $314.97 $290.46 $289.00 $257.2

Savings BC without TES: 16.4% 16.8% 26.0%
BC with TES: 7.8% 8.2% 18.3%

HVAC hourly operating cost

Base case without TES Base case with TES Passive-only Active-only Active+ Passive CTBO
$156.65 $124.20 $99.69 $98.23 $66.45

Savings BC without TES: 36.4% 37.3% 57.6%
BC with TES: 19.7% 20.9% 46.5%
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Fig. 11. Hourly HVAC operating cost profiles.
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optimization cuts the overall demand nearly in half. Activ
only and passive-only are both superior to the base case
active storage, but inferior to the combined case solved
CTBO.

For a utility rate without demand charges, we can p
daily profiles of utility cost. The total hourly buildin
operating cost including non-cooling cost is shown
Fig. 10. The areas under each curve represent the total
operating cost. It is obvious that on-peak cost savings
traded off against nighttime expenses for recharging ac
and/or passive storage inventories.

Fig. 11 illustrates how the cooling related costs
effectively shifted to nighttime periods. In fact, the combin
storage cases lead to near-zero cooling costs during th
peak period.

Finally, Table 3 provides an overview of the daily co
savings achieved for this prototypical day in Phoenix, A
Based on total utility cost, savings of about 16% can
achieved for either passive- or active-only storage,
about 26% for the combined case when compared to
base case without storage. Compared to the base
with active storage under chiller-priority control, savin
of about 8% can be achieved for either passive- or ac
only storage and about 18% for the combined case. B
on cooling related utility cost only, savings of about 37
can be achieved for either passive- or active-only stor
and about 57% for the combined case when compare
the base case without storage. Compared to the base
with active storage under chiller-priority control, savin
of about 20% can be achieved for either passive or ac
only storage and about 46% for the combined case. T
results show that given strong load-shifting incentiv
the benefits of the proposed optimization system may
substantial.
-

e

e

4. Conclusions and future work

This study investigated the potential of building therm
storage inventory, in particular the combined utilization
active and passive inventory, for the reduction of electr
utility cost using common time-of-use rate differentials. T
findings reveal that when an optimal controller is giv
perfect weather forecasts and when the building mo
used for predictive control perfectly matches the ac
building, utility cost savings and on-peak electrical dem
reductions are substantial. While this work establis
the theoretical maximum performance, future efforts
required to determine how strongly prediction performa
and model mismatch deteriorate the controller performa
Eventually, once an acceptable weather predictor is avai
and system identification routines calibrate the underly
model, lab and field experimentation will be required
verify these savings figures during actual operation.
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