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Abstract

Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity
rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by
shifting cooling-related thermal loads either by precooling the building’s massive structure or by using active thermal energy storage systems
such as ice storage. While these two thermal batteries have been engaged separately in the past, this paper investigates the merits of harness
both storage media concurrently in the context of optimal control. The objective function is the total utility bill including the cost of heating
and a time-of-use electricity rate without demand charges. The evaluation of the combined optimal control assumes perfect weather prediction
and plant modeling, which justifies the application of a consecutive time block optimization that optimizes 24 hour horizons sequentially. The
analysis shows that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the
individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be drastically reduced
and justify the development of a predictive optimal controller that accounts for uncertainty in predicted variables and modeling mismatch in
real time.

0 2003 Elsevier SAS. All rights reserved.

1. Introduction building operations: e.g., a building with coincident heating
and cooling due to inferior control loop parameters wastes
The equipment and systems providing thermal comfort energy regardless of boiler and chiller efficiency.
and indoor air quallty for commercial bUIldIngS consume In contrast to energy conversion equipment, less im-
42% of the total energy used in buildings [1]. Energy use provement has been achieved in thermal energy distribution,
and utility cost can be reduced significantly by increasing the storage and control systems in terms of energy efficiency

efficiency of this equipment, by distributing thermal energy and peak load reduction potential. Advancements are also
more efficiently and by more closely meeting the needs of

building occupants. The energy efficiency of system compo- trol systems and improve systems integration from a whole
nents for heating, ventilating, and air-conditioning (HVAC) y P y 9

has improved considerably over the past 20 years. For ex—bUiIding perspectiye while meeting °°°”Pam comfort and
ample, shipment-weighted energy efficiency ratios of uni- performance requirements [4]. This paper illustrates sor.n.e.of
tary air conditioners in the United States have increased bythe recent advancements toward these goals. In the definition
54% [2]. The average efficiency of centrifugal chillers im- ©f this article, ‘active’ denotes that thermal storage systems,
proved by 36% and the efficiency of the best chillers in- such as ice storage, require an additional fluid loop to charge
creased by 50% [3]. With similar improvements in the ef- and discharge the storage tank or to deliver cooling to the
ficiencies of boilers, motors, fans, and pumps, outstanding existing chilled water loop. Building thermal capacitance is
opportunities exist for reducing energy use and cost in com- ‘passive’ since it requires no additional heat exchange fluid
mercial sites. Yet, these opportunities depend on effectivein addition to the conditioned air stream.
This paper evaluates the merits of combined optimal con-

mspondmg author. trol of both passive building thermal capacitarara ac-

E-mail address: ghenze@unl.edu (G.P. Henze). tive thermal energy storage systems to minimize an objec-

needed to improve thermal storage systems, improve con-
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tive function of choice including total energy consumption, 2. Description of the analysis
energy cost, occupant discomfort, or a combination of these.

Instead of merely satisfying instantaneous building cool- 2.1. Investigated building
ing requirements, both active and passive storage inventories

can be effectively harnessed in the framework of supervisory  We investigate a three-story office building as shown in
control: Fig. 1 with five thermal zones per floor, i.e., 15 thermal zones

in total. The perimeter zones have an area of 28&uach,

t While the core zone has an area of 576. ifotal area per
floor is thus 1728 rh and the building total is 5184
Counting the exterior envelope, floor, and ceiling surfaces,
the building mass is approximately 770 ky 2 of floor area,

(9 To shape e net days coning o profe by pre- 5 ons sy S Lot

cooling the bU|Id|ngls massive structure at n.lght; _worker contributes 132 W of internal gain, where 54% are

(c) To make best possible use of the cost savings potentialyssymed to be sensible and 46% latent. Peak lighting density

offered by conventional time-of-use and dynamic utility is 20 Wm=2. The occupancy and lighting schedules for a
rate structures, including real-time pricing options that \weekday are shown in Fig. 2, where hour 13 refers to the
are offered by an increasing number of utilities. hour from 12 to 13. On weekends and holidays building

occupancy is zero and lighting density is 5% of the peak

Several investigators have identified promising savings po- value.

tentials when building operation has been optimized in  The office building was first modeled in EnergyPlus [35]

buildings without storage [5-10]. Moreover, recent analy- and subsequently a TRNSYS [36] model was derived and

(a) To exploit the performance benefits of cooler ambien
conditions during nighttime for central chilled water
plants, allowing for optimal scheduling of chillers,
cooling towers, fans and pumps;

ses suggest significant performance merits fether ac- validated. For a series of identical days (July 21 in Phoenix,
tive [11-21]or passive [22-33] thermal storage inventory Atizona from TMY2 weather data), good agreement of
under optimal control. the zone temperature and cooling load profiles for both

The combined use of both storage media under optimal dynamic simulation programs was achieved. Subsequent

control has been investigated for a 24-hour deterministic
simulation study which revealed that significant operating North Zone (48m x 6m)
cost savings{18%) and electrical demand reduction can
be achieved [34]. Optimal building control proved most
effective in dry climates with large diurnal temperature

. . . . West Zone East Zone
swings, in the presence of utility rates strongly encouraging (12m x Core Zone (12m x
load-shifting, and when cool storage systems allow more 24m) (24m x 24m) 24m)

effective load-shifting than building precooling alone. These
results suggest the investigation of combined optimal storage
utilization facilitated by a predictive supervisory controller
suitable for implementation in commercial buildings. This
paper lays the groundwork for such a closed-loop model-
based predictive optimal controller by investigating an
overall solution approach that can be employed in real time. 2% o
Two essential assumptions are applied:

South Zone (48m x 6m)

Fig. 1. Plan view of office building.

100% T
(a) Weather, occupancy, non-cooling electrical loads are } J ' \
perfectly predicted. ;
60%
40% ]

(b) The building thermal response is perfectly represented
by the building model, i.e., there is no mismatch
between the modeled and actual building behavior.

@
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Fraction of Peak Value

Given these assumptions, closed-loop optimal control is not ., / e OSonanG \

necessary here as updated forecasts do not offer superio /1 —Ughts \
information and a consecutive time block optimization B i { | b S W
approach (described further below) is applied instead. The 0 3 ¢ ? Tim;fmam‘s 1 at @

evaluation of the potential utility cost savings for a wide
range of parameters will be documented in a future article. Fig. 2. Weekday occupancy and lighting schedule.
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annual analysis revealed a building design cooling load of response of the building envelope is typically modeled by
470 kW. transforming the heat diffusion equation

The building is equipped with a central chilled water 9T, 92T,
plant with a capacity ofCCAPpase= 250 kW including a — =a— (2
thermal energy storage system with a capacityBoAP = oz a_x L .
2500 kWh and a second dedicated chiller with a capacity of (Where « is the thermal diffusivity) into a conduction
CCAP1Es = 250 kW. Thus, the base chiller is downsized by transfer function (CTF), yvhere t_he inside and outside sur_face
47% and the active TES tank can meet the peak load alongheat fluxes are determined with the help of construction-
for 5.3 hours. The base chiller has a constant coefficient- SPECific CTF coefficients, b, ¢, andd.

of-performance (COP) of 4.5 and the dedicated TES chiller Na )

has constant COP of 3.0. The zones are conditioned usinggs.oc = ZakTs,o,t—kAt - Zkas,i,t—kAt
a variable air volume (VAV) air-handling unit with hot k:% k=0

water reheat at the VAV terminal boxes. Outside air intake B Z didie

is controlled by an economizer cycle using return air = kgs,0.t—kAt

3)

temperature limit. np ne
QS,i = Zkas,o,t—kAt - chTs,i,t—kAt
k=0 k=0

ng

2.2. Basecase

We will state cost savings relative to a “base case”, _;qus””—km
which is a chilled water system that experiences the same - ] )
cooling load and weather profiles and uses the same HVAC Th€ zone temperature setpoints can be varied between
systems subject to the same utility rate structure as thel® @nd 30C during unoccupied periods and between 20
corresponding optimized storage system. The active TES@Nd 24C during occupied periods. Building precooling
system is governed by the chiller-priority control strategy, red_uces the _convec;nve contrlbut|01_"|s from inside surfaces
i.e., the base chiller is used to serve the building cooling load during occupied periods by depressing the average envelope
up to its capacityCCAPpase While the active storage is used EMPerature during unoccupied periods.
to meet the cooling loads exceedi@GAPpase The passive
building thermal storage inventory is not utilized: During
occupancy, a cooling zone setpoint ofZland a heating
setpoint of 20C is maintained; during unoccupied times,
the HVAC systems are turned off and the temperatures are
allowed to float.

The performance metric for all cases is the total utility
cost for operating the office building over a selected time
horizon, which includes electricity and heating costs. The
electrical utility rate structures includes time-of-use differ-
entiated energy chargesk$vh—1), while the utility rate for
purchased heating is considered constant.

2.4. Activethermal storage system modeling

The defining feature of any storage system is its ability to
bridge a temporal gap between supply and demand. In an ac-
tive thermal energy storage system, the temporal occurrence
of electrical cooling-related loads can be separated from that
of the thermal (cooling) loads. Fig. 3 shows that the building
cooling load can be met by any combination of contributions
from the base chiller and the active TES system, while the
dedicated TES chiller only serves to charge the active TES.

Changesin the state-of-chargef the active TES system
are described in discrete time by

2.3. Passive thermal storage system modeling Xk4+1 = Xg + g (4)

subject to the state constraints
The building structure responds to changes in zone tem-

perature setpoints; sp. The zone temperatui; is directly Xmin =0 < X < Xmax=1 ©)
affected only by the net convective heat flux according to the Base Chiller Dedicated TES Chiller
discrete-time energy balance on the zone air mass CCAP,,, = 250 kW CCAP,z5 = 250 KW
C2o 2= Qo 1) | |

: l ; Qbase . Qch
whereCy is the zone thermal capacitance. These convec- Q
tive heat fluxes include contributions from interior wall sur- di

faces due to transmission and delayed release of solar gains

HVAC systems, m_terna_ll gains, as well as infiltration. Of Building Cooling Load Thermal Energy Storage
those, the current interior wall surfaces fluxes depend on a Qo = 470 KW SCAP = 2500 KWh
history of past inside and outside air and surface tempera-

tures as well as inside and outside heat fluxes. The transient Fig. 3. Central chilled water plant configuration.
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Table 1

Modes of operation of chilled water plant

Mode Mode TES charge/discharge rate Consequence

PM1 Discharging u<0 Q.dis_= MSCA—AIP; ) Och=0; Qba§e= or - Qdis
PM2 Charging u>0 Qdis=0; OQOch= u%; Obase= OL

where uy, is the dimensionless TES charge/discharge rate through a substantial energy rate differential; demand rates

subject to its own nonlinear constraints

(6)

Umink < Uk < Umaxk

The charge and discharge capacities depend on the availabl

thermal energy storage inventory and current cooling load.
The constraints on the control varialdere formulated as

At

Umink = max{—QL,kﬁD,xmin—xk} (7)
and

. At
Umaxk = m|n{CCAPTESﬁ>, Xmax — )Ck} (8)

are not considered and the cost function simplifies to

Jm = mMinC,, = Min{Cenergym + Cheatm } (10)
%.5.2. Consecutive time block optimization

Consecutive time block optimization (CTBO) is em-
ployed, i.e., the predictive optimal controller carries out an
optimization over a predefined planning horizbrand the
complete generated optimal strategy is executed. At any time
k* , the required external variables (such as weather informa-
tion) are predicted over a planning horizbrand the optimal
policy that minimizes/; is determined. The complete strat-
egy is executed without correcting for improved forecasts

Thus, no actions can be taken that would lead to states-of-available duringk* < k < k* 4 L. After L time step the

charge outside feasible limits, i.e., full and empty storage

process is repeated. The planning horizoi is- 24 hours

tank, respectively. Further, no more than the current load canthroughout this study.

be discharged and the TES chiller capa@@APTes limits
the maximum charge raignaxx. There is no explicit ice or
chilled-water tank model and heat transfer limitations on the

The alternative approach is closed-loop optimization
(CLO), i.e., the predictive optimal controller carries out an
optimization over a predefined planning horizoand of the

charging and discharging rates are not considered, i.e., wegenerated optimal strategy only the first action is executed.

assume an idealized loss-free thermal battery.

Depending on the current cooling load, a choice of active
TES charging/discharging rate determines the mode of
operation of the central chilled water plant as shown in
Table 1.

2.5. Optimal control modeling

2.5.1. Monthly cost function

Optimal control is defined as that control trajectory that
minimizes the total monthly utility bilC,, for electricity and
heating:

Jm =mMinC,, = Min{Celecm + Cheam}, Where
K
Celecm = Cenergym + Cdemandn = Zre,k Pr Aty
k=1
+ max {rd,k Pk} 9)
1<k<Knm
K
Cheatm = Z 7 Qheadk Ath
k=1

wherer, , andry are the energy and demand rates for
electricity according to the utility tariff in effect for time
k, K,, is the number of hours in the current mon#, is

the total facility electricity demandz, is a time increment

of one houryy, is the unit cost of heat delivered, aQ;heatk

is the heating demand in hoir For the analysis presented
here, load-shifting to off-peak hours is encouraged only

At the next time step the process is repeated. The final
control strategy of this near-optimal controller over a total
horizon of K steps is thus composed &f initial control
actions ofK optimal strategies of horizoh, whereL < K.

By moving the time window ofL time steps forward and
updating the control strategy after each time step, a new
forecast is introduced at each time step and yields a policy
which is different from the policy found without taking new
forecasts into account.

In the limiting case of perfect forecasts, both CLO and
CTBO can be expected to produce identical results. When
the future is subject to uncertainty, i.e., in the case of
an actual implementation, CLO-based predictive optimal
control is expected to exhibit superior performance. Since
the focal point of this paper is to identify the relative
performance of jointly optimizing the active and passive
building thermal storage, we assume perfect predictions and
use CTBO.

The optimal solutionJ;, found at current timet* is
associated with. global temperature setpoin{@z,sp}’,ji“

andL active TES charge/discharge rafe ki“.

2.5.3. Sequential optimization and building modes

The cost of electrical energ¥energyz is affected by both
the active and passive building thermal storage strategy. The
choice of zone temperature setpoints will affect the cooling
load, which has to be known for the active storage to be
controlled properly. Therefore, there is a causal relationship
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Fig. 4. (a) Simplified stepped optimization for passive storage and, (b) Active storage optimization.

from the passive to the active storage, which requires us to BM3: Occupied and off-peak rates;

solve the passive storage first, followed by the optimization BM4: Occupied and on-peak rates.

of the active thermal storage inventory on the basis of the

previously determined optimal building cooling load profile. During each building mode, the corresponding control

Due to the presence of simple upper and lower zone variable is kept constant as shown in Fig. 4(a). Since these
temperature bounds, the passive thermal storage (buildingfew variables describe stepped profiles for each control
mass) component of the control problem proved to be solvedvariable, we denote them aslution parameters SP. For
effectively with the help of a common implementation of the the given occupancy and utility rate periods and assuming
guasi-Newton method, which is described below. The use hourly time steps, the solution space for An= 24 hour
of a direct search method (Nelder—Mead Simplex) led to an horizon is reduced from 24 dimensions to 5 dimensions. For
excessive number of function evaluations (TRNSYS runs) any horizonL, the number of parameters can increase or
because of cost penalties arising from bound violations. decrease depending on how many distinct occupancy and
To reduce the numerical complexity of the passive storage rate periods are covered. Though this simplification causes
optimization problem, a simplification is introduced: Instead the solution to become slightly suboptimal compared to the
of optimizing L variables, only one global zone setpoint full solution, the problem now becomes computationally
Tz sp is determined for each combination of occupancy tractable.

(occupied, unoccupied) and utility rate periods (on-peak, The active storage (TES) optimization problem is char-
off-peak), defined as building mode (BM), occurring over acterized by complex and nonlinear constraints as expressed

the nextL time steps by Egs. (7) and (8), yet simple state transitions as character-
ized by Eq. (4). This class of problem is most readily solved
BM1: Unoccupied and off-peak rates; using dynamic programming, which is described below, and

BM2: Unoccupied and on-peak rates; yields L solution variables as shown in Fig. 4(b).
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{Tese o
1
{Tesr b = E{Tz‘ua ~Ty6} Passive Storage Active Storage

Optimization with —- J, Optimization with
{u},, =0 Quasi-Newton |~ ] Dynamic Programming > {u)

opt

Fig. 5. Iterative sequential optimization of utility caSg .

2.5.4. Iterative sequential optimization ically [37]. We employ the popular method by Broyden,
Fig. 5 illustrates how the least utility co$t over horizon Fletcher, Goldfarb, and Shanno (BFGS):
L is determined. At time zero and starting with initial T TTe 7.
q9i4; H;'s; siHi

zone temperature setpoint®z sp}init halfway between the  Hi;1=H; +
upper and lower bounds and no active storage utilization

{u}init = 0 the passive storage inventory is optimized to wheres; = x;41 — x; andg; = V f(x;+1) — Vf(x;). In
minimize Cr. As a result, the optimal building cooling the presented case, the gradient information is derived by
load profile is computed and handed over to the active partial derivatives using numerical differentiation via finite
storage optimization, which calculates an optimal TES differences: Each decision variabteis perturbed and the
charge/discharge strategy. In a second pass, the optimarate of change in the cost function is determined. Then at
active storage utilization strategy and the previously found €ach iteratiori, a line search is performed in the direction of
optimal_ zone tempera_ture setpoint profile are employed _to d—= _Hl;l YV F(x) (14)
determine the new optimal zone temperature setpoint profile L ) ) _

and optimal utility costJ;. This cycle is repeated until ~ The task of minimizing operating cost using active thermal
the optimal cost/; converges. Typically, convergence is Storage inventory is framed as asequ.er?tlalldeC|S|on—.mak|ng
attained after 23 iterations. Previously optimal solutions Process of decision variable The optimization technique

are stored as starting values for subsequent optimizations td?Ynamic programming commonly used for this type of prob-
reduce execution time. lems was first formally introduced by the mathematician

Richard Bellman in 1957. BellmanBrinciple of Optimal-
ity [38] states that:

(13)
ql.Tsi s;rHis,-

2.6. Optimization algorithms
“An optimal policy has the property that whatever the ini-

We investigate two classes of optimization algorithms: a  tial state and initial decision are, the remaining decisions
guasi-Newton method, which approximates the functiongra- ~ must constitute an optimal policy with regard to the state
dient through finite differences, and dynamic programming ~ resulting from the first decision.”
for sequential decision making problems. Among those
methods that utilize gradient information, quasi-Newton N other words, the optimal solution to dnstep process
methods are the most popular. They collect curvature infor- Must come from the optimal solution of ah — 1-step

mation on the cost function at each iteration to describe a Process that is based on the optimal outcome of the first
quadratic model problem step. The solution of ongé-step process will thus be found

recursively by optimizing. single-step processes in reverse
(15 T time by starting at the end of time and moving back to
”}'n{ﬁx Hx+c'x+ b} (11) “now”. To apply, the cost function has to be incrementally
additive and the dynamic system has to be discrete.
where the Hessian matri¥, is a positive definite symmet-
ric matrix, ¢ is a constant vector, anelis a constant. The
optimal solutionx* occurs when the partial derivatives.of 3. Resaults

vanish, i.e.,
The utility rate is assumed to be $0:RWh~1 on-peak
Vi) =Hx*+c=0 = x*=—H (12) and $0.0%kWh~1 off-peak; no demand charge is levied. The
on-peak period is weekdays from 9 AM to 6 PM, off-peak
Newton-type methods calculate the Hessién directly, all remaining hours. The building is occupied from 7 AM to

which is numerically very demanding. Quasi-Newton meth- 5 PM.

ods avoid the direct computation of the Hessian by extract-  The viewgraphs in this section are created on the basis of
ing curvature information from observed behavjat) and simulations in which July 21 in Phoenix, AZ is repeated over
V f(x) and subsequently approximating the Hessian humer-and over again until steady-state conditions are attained after
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Table 2
System sizing for investigated control strategies
Case No.  Optimization  Units Sizing
1 Base case WITHOUT active storage
CCAPbase kw 500
CCAPtes kw 0
SCAP kwh 0
Base chiller fully sized, no active
storage; night setup
2 Base case WITH active storage
CCAPbase kw 250
CCAPtes kw 250
SCAP kWh 2500
Base chiller downsized; chiller-
priority active storage control;
night setup
3 Passive-only
CCAPbase kw 500
CCAPtes kW 0
SCAP kWh 0
Base chiller fully sized, no active
storage; zone setpoints optimized
4 Active-only
CCAPbase kw 500
CCAPtes kW 250
SCAP kWh 2500
Base chiller fully sized, optimal
active storage control; night setup
5 Active and passive
CCAPbase kw 500
CCAPtes kW 250
SCAP kWh 2500

Base chiller fully sized, optimal
active storage control; zone
setpoints optimized

Average Zone Temperature [°C]

179

about 7 identical days. The outdoor ambient temperature
swings from about 16C early in the morning to over 3&

at 6 PM. Table 2 lists the nhominal capacities of the base
chiller and the active storage and chiller capacities for the
five investigated cases.

Case 1 represents the base case in which cooling loads
have to be met without any storage available. Case 2
makes use of active thermal storage as governed by chiller-
priority control, i.e., the downsized base chiller meets the
cooling loads up to its capacitCAPpase thereafter the
active storage contributes the remainder. The dedicated
active storage chiller requireSCAP/CCAPs = 10 hours
to recharge an empty storage tank. Case 3 optimizes the
passive storage capacity by properly precooling the building
structure using a fully sized base chiller. In case 4, the active
storage is now optimized instead of governed by a simple
rule such as chiller-priority. Finally, case 5 optimizes both
active and passive storage media and represents the focus of
this research.

Case 5 is solved by optimizing each 24 hour interval
sequentially, i.e., as a series of consecutive time blocks
(CTBO) of 24 hours length each. The CTBO method does
not allow for the consideration of newly available new
information as it becomes available. However, it represents
a reference scenario for comparison as we assume perfect
prediction for this study.

The thick lines in Fig. 6 represent the upper and lower
temperature bounds for the operation of the office build-
ing on a weekday. It can be seen how passive-only control
decides on substantial nighttime precooling down to about
21°C zone temperature averaged over all 15 zones. When
the temperatures are allowed to float, the average zone tem-
perature rises beyond 28 during unoccupied times. The

32
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AR 32

Ambient Temperature [°C]
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Fig. 6. Average zone temperature profiles.



180 G.P. Henze et al. / International Journal of Thermal Sciences 43 (2004) 173-183

100%

90%

\g\

X
AR

80%

0%

60%

50%

40%

30%

Active Storage State-of-Charge [-]

12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

1 2 3 4 5 6 7 8 9 10 N

I =BC with TES —&— Active Only —{— Active + Passive CTBO |

Fig. 7. Active storage state-of-charge profiles.
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Fig. 8. Building cooling load profiles.

combined utilization of active and passive storage leads to by the end of occupancy. The combined storage utilization
less precooling than in the passive-only case. All strategiesapproach makes less use of the active storage.

involving passive storage allow for the temperatures to float  Fig. 8 illustrates the effect of precooling on the daytime

from the end of occupancy at 5 PM to 6 PM because elec- cooling load profile and shows how the building cooling

tricity prices are still high (on-peak) during this time. After
6 PM, electricity prices are low and the building is unoccu-
pied.

The inventory of the active storage is shown in Fig. 7
from midnight to midnight for those strategies involving

active storage. For the base case with active storage under

load is shifted away from the expensive on-peak period to
the off-peak period for all cases involving passive storage
utilization. The passive-only approach leads to the lowest
on-peak cooling loads, next comes the CTBO approach to
the combined case.

Reducing on-peak electrical demand is a side effect of

chiller-priority control, the storage is fully charged during shifting expensive on-peak cooling loads to off-peak periods
off-peak hours and discharged by about 50% during the day.for energy-only optimizations as can be seen in Fig. 9.
The active-only optimization discharges fast as of 8 AM, but While the base case with active storage under chiller-priority
slows down during the early afternoon hours to end up empty control already reduces the demand by 20%, the combined
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Fig. 10. Total hourly building operating cost profiles.
Table 3
Summary of daily operating costs
Total building operating cost
Base case without TES Base case with TES Passive-only Active-only AetRassive CTBO
$347.42 $314.97 $290.46 $289.00 $257.22
Savings BC without TES: 18% 168% 260%
BC with TES: 78% 82% 183%
HVAC hourly operating cost
Base case without TES Base case with TES Passive-only Active-only AetRassive CTBO
$156.65 $124.20 $99.69 $98.23 $66.45
Savings BC without TES: 38% 37.3% 576%
BC with TES: 197% 209% 465%
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Fig. 11. Hourly HVAC operating cost profiles.

optimization cuts the overall demand nearly in half. Active- 4. Conclusionsand futurework

only and passive-only are both superior to the base case with

active storage, but inferior to the combined case solved by  This study investigated the potential of building thermal

CTBO. storage inventory, in particular the combined utilization of
For a utility rate without demand charges, we can plot active and passive inventory, for the reduction of electrical

daily profiles of utility cost. The total hourly building utility cost using common time-of-use rate differentials. The

operating cost including non-cooling cost is shown in findings reveal that when an optimal controller is given

Fig. 10. The areas under each curve represent the total dailyperfect weather forecasts and when the building model

operating cost. It is obvious that on-peak cost savings areused for predictive control perfectly matches the actual

traded off against nighttime expenses for recharging active building, utility cost savings and on-peak electrical demand

and/or passive storage inventories. reductions are substantial. While this work established
Fig. 11 illustrates how the cooling related costs are the theoretical maximum performance, future efforts are

effectively shifted to nighttime periods. In fact, the combined required to determine how strongly prediction performance

storage cases lead to near-zero cooling costs during the onand model mismatch deteriorate the controller performance.

peak period. Eventually, once an acceptable weather predictor is available
Finally, Table 3 provides an overview of the daily cost and system identification routines calibrate the underlying

savings achieved for this prototypical day in Phoenix, AZ. model, lab and field experimentation will be required to

Based on total utility cost, savings of about 16% can be verify these savings figures during actual operation.
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