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Abstract. A probabilistic risk assessment was conducted for the effects of future climate change

on U.S. cold-water habitat. Damage functions for the loss of current cold-water fish habitat in the

United States and the Rocky Mountain region were integrated with probability distributions for U.S.

June/July/August (JJA) temperature change using Monte Carlo techniques. Damage functions indi-

cated temperature thresholds for incipient losses (≥5%) of cold-water habitat in the United States

and the Rocky Mountains of 0.6 and 0.4 ◦C, respectively. Median impacts associated with different

temperature distributions suggested habitat loss in 2025, 2050, and 2100 of approximately 10, 20, and

30%, respectively, for the United States and 20, 35, and 50%, respectively, in the Rocky Mountains.

However, 2100 losses in excess of 60% and 90% were possible for the United States and the Rocky

Mountains, respectively, albeit at low probabilities. The implementation of constraints on greenhouse

gas emissions conforming to the WRE750/550/350 stabilization scenarios had little effect on reducing

habitat loss out to 2050, but median effects in 2100 were reduced by up to 20, 30, and 60%, respec-

tively. Increased focus on probabilistic risk assessment may be a profitable mechanism for enhancing

understanding and communication of climate change impacts and, subsequently, risk management.

1. Introduction

Ecological systems are sensitive to climatic variability and change due to constant
exposure to the climate and the limited capacity of individuals within populations to
adapt to climatic conditions via genetic, physiological, and behavioral mechanisms.
A number of reviews have identified aquatic ecosystems within the United States as
being particularly vulnerable to the effects of climate change (Meyer et al., 1999;
IPCC, 2002; Poff et al., 2002), with cold-water species having a high sensitivity to
thermal stress, relative to cool and warm-water fish guilds (Eaton and Scheller, 1996;
Mohseni et al., 2003). In addition, over the past fifteen years, several studies have
examined the potential effects of anthropogenic climate change on the distribution
of cold-water species (Meisner et al., 1987; Magnuson et al., 1990; Matthews and
Zimmerman, 1990; Meisner, 1990; Eaton and Scheller, 1996; Keleher and Rahel,
1996; Rahel et al., 1996; O’Neal, 2002; Mohseni et al., 2003). Therefore, this group
of organisms may be an early responder to the effects of U.S. climate change, and
those effects may have significant consequences at the economic and ecosystem
level (U.S. EPA, 1995; Ahn, 2000).
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A fundamental shortcoming of current methods to quantify the potential im-
pacts of climate change on both natural and societal systems is the use of climate
scenarios in the projection of climatic changes in the absence of information re-
garding the absolute or even relative probabilities associated with different sce-
narios (Jones, 2000, 2001). For example, Eaton and Scheller (1996) and Mohseni
et al. (2003) estimated the effects of future changes in U.S. mean temperature
on cold-water fish habitat in response to the radiative forcing associated with a
doubling of the pre-industrial atmospheric concentration of carbon dioxide (CO2).
Such scenario-driven impact assessment is invaluable in clarifying the sensitivity
of a particular system to changes in climate conditions and constraining projec-
tions of possible effects. However, by themselves, such sensitivity analyses provide
limited information regarding the likelihood that a particular consequence will
occur. For example, criticisms have been leveled at the Intergovernmental Panel
on Climate Change’s (IPCC) projection of future mean global temperature in-
crease of 1.4–5.8 ◦C (IPCC, 2001) for its failure to assign probabilities to this range
(Reilly et al., 2001; Schneider, 2001), and currently there is ongoing debate regard-
ing the utility of probabilistic information on climate change (Dessai and Hulme,
2003).

One approach for addressing such challenges is the application of risk-based
methods in the analysis of climate change impacts (Jones, 2001; Jones and Mearns,
2005). Risk analysis is designed to integrate information regarding the response
of systems to forcings of interest with information regarding a system’s exposure
to such forcings to yield a probabilistic estimate of system response. Its advantage
in the analysis of climate change impacts is its ability to account for uncertainty
and provide information regarding not only the sensitivity of systems to climatic
changes, but also the likelihood that such changes will, in fact, occur. As such it may
be a valuable tool for informing environmental management processes, because
it allows one to evaluate the necessity and efficacy of alternative management
strategies (Jones, 2001; Pittock et al., 2001; Schneider, 2001).

Probabilistic risk analysis for climate change impacts can be performed provided
two components are available. First, information is needed on the sensitivity of a
particular system to changes in climatic conditions (Jones and Mearns, 2005), be
they temperature, precipitation, or some other variable. Such sensitivity can be
expressed either as a discrete threshold (see O’Neill and Oppenheimer, 2002),
a probability distribution (see Mastrandrea and Schneider, 2004), or a damage
function (see Toth et al., 2000). Thresholds provide point estimates for the incipient
level of exposure at which system responses become significant or excessive. Such
thresholds may be an inherent property of the system (e.g., point of failure) or may be
a subjective judgment by stakeholders through qualitative or quantitative analyses
(Moss, 1995; Jones, 2001; Anand, 2002; Jones and Mearns, 2005). Probability
distributions and damage functions are strictly quantitative estimates of the response
of a system over a range of plausible exposure conditions. Such sensitivity analyses
can be readily constructed from a number of sources, including historical data
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regarding system changes in response to climate variability or projected changes
in response to an ensemble of climate scenarios.

The second component that is needed is information on the relative probabili-
ties of future changes in climate conditions (Jones and Mearns, 2005). Although
attempts to express climate uncertainty probabilistically date to at least the mid-
1990s and the IPCC’s Second Assessment Report (Titus and Narayanan, 1995,
1996; Visser et al., 2000), renewed interest in the probabilistic uncertainty of cli-
matic changes has emerged in the wake of the IPCC’s Third Assessment Report
(Reilly et al., 2001; Wigley and Raper, 2001; Allen and Stainforth, 2002; Giorgi and
Mearns, 2003; Webster et al., 2003). Different methods utilize different approaches
and emphasize different sources of uncertainty such as climate sensitivity, model
performance criteria, greenhouse gas (GHG) and aerosol emissions, the carbon
cycle, or some combination thereof. The number of probability distributions gen-
erated to date remains limited, with most focusing on the aggregate global level
(Reilly et al., 2001; Wigley and Raper, 2001; Knutti et al., 2002; Webster et al.,
2003), although some regional analyses have been conducted as well (Giorgi and
Mearns, 2003; Tebaldi et al., 2004).

The current study applies a risk-based approach to the analysis of data from pre-
viously published impact assessments regarding the effects of future climate change
on current cold-water fish habitat in the United States. Cold-water fish species such
as trout and salmon are valued for recreational and commercial fishing as well as for
their contribution to U.S. freshwater biodiversity (U.S. DOI, 1997). The existence
of multiple studies of cold-water habitat at the national level, utilizing different
scenarios but similar assessment endpoints, makes this a useful resource for ex-
ploring applications of risk analysis methods. Here, previous impact assessments
are expanded to develop damage functions that relate changes in national and re-
gional cold-water fish habitat to future changes in ambient mean U.S. temperature,
which are subsequently used to estimate thresholds for incipient loss of cold-water
habitat. Damage functions are also compared with various probability distributions
for future U.S. temperature change in 2025, 2050, and 2100 to assess the timing and
likelihood of different magnitudes of habitat loss. Finally, the sensitivity of habi-
tat impacts to potential GHG mitigation is assessed using various carbon dioxide
atmospheric stabilization scenarios as constraints on future U.S. climate change.

2. Methods

2.1. DATA SOURCES

Data regarding the impacts of U.S. climate change on current cold-water fish habitat
in the United States were derived from five previously published impact assessments
(Eaton and Scheller, 1996; Keleher and Rahel, 1996; Rahel et al., 1996; O’Neal,
2002; Mohseni, et al., 2003). Three of these studies (Eaton and Scheller, 1996;
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O’Neal, 2002; Mohseni, et al., 2003) reported changes in the distribution of cur-
rent U.S. cold-water habitat by adding the projected summer temperature change
generated for 5◦ × 5◦ grid cells for one or more scenarios of future climate change
from general circulation models (GCMs) to average air temperatures recorded at
monitoring stations within each grid cell. Changes in local air temperature were
scaled to changes in stream temperatures at USGS gauging stations, based upon var-
ious scaling algorithms (e.g., Stefan and Preud’homme, 1993; Mohseni et al., 1998).
However, different studies used different models to estimate changes in stream tem-
peratures from air temperatures. Eaton and Scheller (1996), for example, utilized a
linear model whereas Mohseni (1998) and O’Neal (2002) utilized non-linear mod-
els that tend to produce more conservative estimates of stream temperature changes.
Once calculated, stream temperatures were then compared with published thermal
tolerances for cold-water fish species (e.g., Eaton and Scheller, 1996). Stations
where stream temperatures exceeded species tolerances were assumed to no longer
be suitable as habitat for a particular species. Such local data were aggregated over
the nation to produce national estimates of the geographic extent of habitat loss
relative to current distributions in response to U.S. average temperature change.

Eaton and Scheller (1996) and Mohseni et al. (2003) utilized only a single cli-
mate change scenario (equilibrium climate change associated with a CO2 doubling)
in their analyses. In comparison, O’Neal (2002) utilized eight different scenarios
(based upon the output from three different GCMs and four different emissions
scenarios) and reported results over three different time periods (2030, 2060, and
2090). As such, the current national analysis is dominated by the methodology
and results of O’Neal (2002) due to the greater number of scenarios, and thus,
data. However, data from Eaton and Scheller (1996) and Mohseni et al. (2003)
contributed to capturing some of the range of uncertainty among different studies
and were an important check on the consistency of results among different national
studies and methodologies. Eaton and Scheller (1996), O’Neal (2002), and Mohseni
et al. (2003) also reported results for eight individual cold-water species, enabling
construction of species-specific damage functions.

Two studies (Keleher and Rahel, 1996; Rahel et al., 1996) reported changes in the
distribution of cold-water fish habitat in the Rocky Mountain region by comparing
current habitat climate envelopes for cold-water fish species (based upon summer
air temperatures), with estimated changes in climate envelopes in response to five
scenarios of increases in regional surface air temperatures. Keleher and Rahel (1996)
divided their analysis into regional (i.e., Rocky Mountains) and local (Wyoming)
components, both of which were included in the current study. Rahel et al. (1996)
focused specifically on the North Platte River drainage of the Rocky Mountains.
Collectively, these results enabled a region-specific risk analysis of climate change
impacts to habitat in the Rocky Mountains.

Results from these five studies formed the basis for the calculation of habitat
damage functions in response to U.S. temperature increases for both the coterminus
United States as a whole, as well as specifically for the Rocky Mountain region.



RISK-BASED REANALYSIS OF COLD-WATER HABITAT

2.2. DAMAGE FUNCTIONS FOR HABITAT LOSS

Calculation of damage functions for both the United States and the Rocky Moun-
tains was achieved by first plotting the current habitat loss versus the temperature
change in the associated scenario for each climate change scenario from each of
the studies outlined above. A least-squares linear regression (with the regression
line forced through the origin) was subsequently conducted on the U.S. and Rocky
Mountain data to model the relationship between future average temperature change
and cold-water habitat. Uncertainty around these regression models was estimated
by calculating 99.9% confidence intervals for regression coefficients. Regression
coefficients and confidence intervals were subsequently used to calculate probabil-
ity distributions for regression coefficients using AnalyticaTM 2.0. These probability
distributions were subsequently used as parameters in stochastic risk modeling (see
below). Probability distributions were calculated by assigning the regression co-
efficients cumulative probabilities of 0.5, and lower and upper 99.9% confidence
limits for regression coefficients cumulative probabilities of 0 and 1, respectively.
Using these damage functions, an effect threshold for incipient cold-water habitat
loss was defined as a ≥5% reduction, assuming such a threshold protects 95% of
habitat as suggested by international standards on effect levels in risk assessment
and management (Emans et al., 1993; Okkerman et al., 1993). Threshold temper-
ature changes associated with this level of effect were estimated from both the
United States and Rocky Mountain damage functions.

Species-specific damage functions and temperature thresholds were also cal-
culated, based upon those species common to Eaton and Scheller (1996), O’Neal
(2002), and Mohseni et al. (2003), which included Brook trout, Cutthroat trout,
Rainbow trout, Brown trout, Chum salmon, Pink salmon, Coho salmon, and
Chinook salmon. In calculation of the species-specific damage functions, data
from Eaton and Scheller (1996) and Mohseni et al. (2003) suggested higher habi-
tat loss in response to warming. Data from Mohseni et al. (2003), though higher,
were generally consistent with those of O’Neal (2002). However, data from Eaton
and Scheller (1996) were outliers relative to O’Neal (2002) as well as Mohseni
et al. (2003), which was likely a function of the aforementioned differences in the
manner in which studies estimated stream temperatures. Although those studies
focused on the Rocky Mountains also utilized common species, species-specific
results were not presented, which prevented species-specific risk analysis for this
region.

2.3. PROBABILITY DISTRIBUTIONS FOR FUTURE U.S. WARMING

The probabilistic uncertainty in future average U.S. June/July/August (JJA) tem-
perature change was estimated from multiple climate simulation exercises using the
publicly available Model for the Assessment of Greenhouse-Gas Induced Climate
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Change (MAGICC; v.4.1) coupled with a regional climate change scenario gen-
erator (SCENGEN). The MAGICC model used was identical to that utilized by
the IPCC (2001) for its projections of global mean temperature and sea-level rise
changes. Global temperature changes in 2025, 2050, and 2100 relative to unper-
turbed baseline controls were simulated using MAGICC tuned to seven different At-
mosphere/Ocean General Circulation Models (GCMs): CSIRO, CSM, HADCM2,
HADCM3, ECHM4, GFDL, PCM. Default (mid-range) estimates were used for
carbon cycle modeling, aerosol forcing, and ice melt parameters as well as variable
thermohaline circulation and carbon cycle feedbacks. The output from different
climate models was used to capture the range of uncertainty associated with cli-
mate sensitivity in addition to fundamental differences in model representation
of the climate system. The range for climate sensitivity reported by the IPCC
(2001) was 1.5–4.5 ◦C (∼90% confidence interval), and the seven GCMs emulated
by MAGICC cover the majority (1.7–4.2 ◦C) of this range, although other anal-
yses have yielded significantly wider ranges for climate sensitivity (Forest et al.,
2002; Murphy et al., 2004; Stainforth et al., 2005). To capture uncertainty asso-
ciated with future global GHG emissions, simulations for each GCM were con-
ducted using six of the Special Report on Emissions Scenarios (SRES) scenarios
(A1B-AIM, A1T-MESSAGE, A1Fi-MiniCAM, A2-MESSAGE, B1-MESSAGE,
and B2-MESSAGE) of the IPCC (2000). Previous analysis has indicated that CO2

emissions in the IPCC SRES scenarios span much of the range of uncertainty in
future global emissions, although the SRES scenarios tend to over-represent the
low-end of this uncertainty range (Webster et al., 2002). Modeling the seven GCMs
with the six emissions scenarios resulted in a total of 42 MAGICC simulations of
global mean temperature change for each time period. Global mean temperature
change in 2100 for these 42 simulations ranged from 1.5–5.4 ◦C, compared to the
IPCC’s corrected range of 1.4–5.6 ◦C (IPCC, 2001; Wigley and Raper, 2002). The
disparity between the simulated 2100 global mean temperature range in the current
study and that of the IPCC is a function of the current analysis’ use of only six of
the SRES scenarios and the use of default mid-range estimates for carbon cycle and
aerosol forcing parameters to limit the number of model simulations.

Global mean temperature changes were scaled to the United States (25◦ to
50◦N by 65◦ to 125◦W) for each of the above GCMs and emissions scenarios
using the SCENGEN regional modeling tool (with exponential/power law scaling),
which downscales global average temperature changes to 5◦ × 5◦ grid cells using
the scaling technique of Santer et al. (1990). This technique involves normalizing
spatial patterns of climate change from AOGCMs to global mean temperature
change, which enables regional projections to be generated from relatively simple
climate models simply by varying the strength of the signal for global temperature
change. Temperature changes for individual grid cells were subsequently averaged
to yield a model estimate of mean U.S. JJA temperature change.

Data output from SCENGEN was used to calculate continuous cumulative prob-
ability distributions for U.S. JJA temperature change in 2025, 2050, and 2100.
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Various methods can be used to estimate probability distributions from ensemble
model results. The current study utilized six different approaches to partially ac-
count for the lack of standardized methods and to assess the sensitivity of different
assumptions about the relative likelihood of different model configurations and/or
emissions scenarios. The first method (referred to hear as EQUAL) assumed all
models performed similarly with respect to simulating future U.S. climate condi-
tions (i.e., results from different models for a particular emissions scenario were
treated as equally likely). Thus, the probability of a particular model result was
calculated using the following equation:

PS�T = PSk × Pm�T,k (1)

where PS�T is the probability of a projected temperature change for a particular
model and emissions scenario, PSk is the probability of the k emissions scenario, and
Pm�T,k is the probability of an individual model result for the k emissions scenario.
For the EQUAL distribution, Pm�T,k among different models was treated as equally
likely, which, given the seven models used, equaled 0.14. Meanwhile, PSk could be
weighted based upon the probability of various emissions scenarios used with the
climate models. For the EQUAL distribution, the six emissions scenarios were not
weighted, and thus each carried a probability of 0.17 (Table I).

The second method for estimating a probably distribution for future temperature
change (referred to here as SENS), was identical to EQUAL (Equation (1)) except
that the probability of model results for a particular climate model (Pm�T,k) were
weighted based upon the normal deviation of model effective climate sensitivities

TABLE I

Probabilities associated with different emissions scenarios in the estimation of prob-

ability distributions for future U.S. temperature change. Weighted probabilities were

assigned assuming net radiative forcing from greenhouse gases corresponded to a

normal probability distribution based upon the scenario ensemble mean and standard

deviation. Probabilities associated with individual scenarios were then normalized so

that the probabilities of the six scenarios summed to unity

Weighted

Scenario Unweighted 20251 2050 2100

A1B 0.17 0.23 0.23 0.23

A1Fi 0.17 0.18 0.06 0.07

A1T 0.17 0.13 0.21 0.18

A2 0.17 0.10 0.17 0.18

B1 0.17 0.13 0.20 0.13

B2 0.17 0.24 0.14 0.21

Total pobability 1.0 1.0 1.0 1.0
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TABLE II

Probabilities associated with different climate models under the SENS and

SENS/Scenario distributions, based upon weighting of effective climate sensitivi-

ties. Weighted probabilities were assigned assuming climate sensitivities among the

seven models simulated in the current study corresponded to a normal probability

distribution with the highest sensitivity corresponding with the upper 90% confidence

limit. Probabilities associated with individual models were then normalized so that

the probabilities of the seven models summed to unity

Effective

Model climate sensitivity Unweighted Weighted

CSIRO 3.7 0.142 0.12

CSM 1.9 0.142 0.12

ECHM4 2.6 0.142 0.21

GFDL 4.2 0.142 0.05

HADCM2 2.5 0.142 0.20

HADCM3 3.0 0.142 0.21

PCM 1.7 0.142 0.09

Total pobability 1.0 1.0

from the ensemble mean. Probabilities were assigned by assuming that effective
climate sensitivities for the seven climate models (ranging from 1.7–4.2) conformed
to a normal distribution with the highest effective sensitivity representing the upper
90% confidence limit (see Morgan and Keith, 1995). This distribution was then
used to assign probabilities to the output of each climate model, and these probabil-
ities were then normalized so that they summed to unity (Table II). This weighting
scheme effectively biased the resulting probability distribution toward the mean,
reducing the likelihood of temperature projections based upon models with ef-
fective climate sensitivities that deviated significantly from the ensemble mean of
2.9 ◦C.

The third method for estimating a probability distribution for future tempera-
ture change (referred to here as REA), weighted the probability of model results
based upon performance criteria following the reliability ensemble analysis (REA)
methodology of Giorgi and Mearns (2002, 2003). The REA method weights the
results from an ensemble of GCMs based upon two criteria: 1) the reliability with
which an individual model reproduces historical climate changes and 2) the extent
to which the projections of an individual model converge on the ensemble mean.
Each model was assigned a reliability indicator (Ri ) based upon its performance
with respect to these two criteria using the following formula (Giorgi and Mearns,
2002):

Ri =
{[

εT

abs(BT,i )

]m[
εT

abs(DT,i )

]n}[1/(m×n)]

(2)
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where εT represents historical climate variability based upon the difference in the
minimum and maximum value for average U.S. temperatures from 30-year running
means of (linear) detrended average annual U.S. temperature anomalies (1880–
2003; Hansen et al., 2001; Giorgi and Mearns, 2002); BT,I represents the average
model bias in reproducing the historical (1961–1990) baseline mean temperature
climatology for the study area (CRU; New et al., 1999). Root-mean square errors
among the seven models for the coterminus United States ranged from 1.2–3.2. DT,I

represents the distance between an individual model’s projection and the ensemble
mean, and m and n represent weighting coefficients for the two Ri criteria (here
both were assigned equal weights of 1). As noted in Giorgi and Mearns (2002),
calculation of Ri is an iterative procedure. Here, values for Ri converged after four
iterations. Using this formula, reliability indicators were assigned to each of the 42
model simulations for each time period. Reliability indicators for each simulation
were then used to estimate probabilities for projected temperature changes using
the following formula (Giorgi and Mearns, 2003):

PS�T = PSk

[
Ri,k∑

R j,k

]
(3)

where PS�T represents the probability of a projected temperature change; PSk is
the probability associated with a particular emissions scenario; Ri,k represents the
reliability indicator for a particular model given the k emissions scenario; and �R j,k

represents the sum of Ri among all climate models for the k emissions scenario.
The fourth, fifth, and sixth methods for generating a probability distribution

(referred to here as EQUAL/Scenario, SENS/Scenario, REA/Scenario) were iden-
tical to the first three methods, but with an additional weighting scheme applied
to the emissions scenarios (PSk). Weights for emissions scenarios were calculated
based upon the normal deviation of an individual scenario’s net radiative forcing
from GHGs and sulfate aerosols for a particular time period from mean radiative
forcing among all six scenarios. Probabilities for PSk were assigned by assuming
that radiative forcing for the six SRES scenarios for each time period conformed
to a normal distribution based upon the mean and standard deviation for the six
scenarios. This distribution was then used to assign probabilities to each emissions
scenario, and these probabilities were then normalized so that they summed to unity
(Table I). This weighting scheme effectively biased the resulting probability distri-
bution toward the mean, reducing the likelihood of temperature projections based
upon emissions scenarios that deviated significantly from the emissions scenario
ensemble mean. This also resulted in some counterintuitive weights for individual
emissions scenarios. For example, the A1Fi emissions scenario, which generally
represents a high emissions scenario, has relatively low net radiative forcing over
the near-term due to high sulfate aerosol emissions. In addition, the probabilities
associated with individual scenarios changed across time periods, which was an
artifact of dispensing of the underlying storyline context for individual scenar-
ios and using them simply as a means of bounding the uncertainty in emissions. It
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should be noted that there are various arguments for and against assigning probabil-
ities to emissions scenarios (Schneider, 2001; Jones, 2004; Risbey, 2004), and that
applying probabilities to the SRES scenarios specifically violates the underlying
assumptions utilized in scenario development (IPCC, 2000).

The probabilities associated with simulated temperature changes using the vari-
ous weighting schemes identified above were subsequently summed and expressed
as cumulative probabilities. Temperature changes and their associated cumulative
probabilities were then used to estimate continuous cumulative probability distri-
butions via linear interpolation among data points using AnalyticaTM 2.0.

2.4. MITIGATION SCENARIOS

To assess the sensitivity of cold-water habitat to global GHG emissions reductions,
a series of climate model simulations were also conducted using three of the WRE
emissions stabilization scenarios (WRE350/550/750) as upper constraints on future
emissions in the MAGICC/SCENGEN ensemble modeling. The WRE emissions
scenarios constrain future GHG emissions in order to achieve a stable atmospheric
CO2 concentration (Wigley et al., 1996), thus limiting, as a consequence, future
radiative forcing and temperature change. However, some of the IPCC illustrative
scenarios have lower emissions trajectories and radiative forcing over the 21st cen-
tury than some of the WRE stabilization scenarios. Failure to account for this fact
results in the counterintuitive result that in some ensemble simulations, minimum
warming in response to mitigation is higher than minimum warming in a no mitiga-
tion case. Thus, modeling of GHG mitigation cases in MAGICC/SCENGEN was
performed for 2025, 2050, and 2100 using each of the three WRE scenarios as well
as other SRES scenarios that generated equal or less net radiative forcing for each
time period as indicated by MAGICC output. As before, probability distributions
for stabilization cases were calculated using different assumptions regarding the
weighting of model outputs (here EQUAL-350/550/750 and SENS-350/550/750).
However, due to the assumption of policy action in order to achieve a stabilization
goal, all of the emissions scenarios were only considered with equal weights. Con-
tinuous cumulative probability distributions were estimated for the stabilization
distributions in the same manner as above. Due to insufficient sample size for REA
distributions under the WRE350 constraint, REA weighting was not utilized in the
analysis of climate change in response to mitigation.

2.5. RISK ANALYSIS

Estimates of the probabilistic uncertainty associated with 2025, 2050, and 2100
habitat loss were generated by comparing habitat damage functions with the various
probability distributions for future JJA temperature change. For each time period
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and probability distribution for JJA temperature change, a series of 1,000 Monte
Carlo simulations was conducted using AnalyticaTM 2.0. Samples of future U.S.
temperatures were taken from the different probability distributions and used as
input in the damage functions for National (aggregate and species-specific) or
Rocky Mountain habitat loss, while simultaneously sampling among probability
distributions for damage function regression coefficients. This analysis resulted in
continuous probability distributions for future cold-water habitat loss accounting
for uncertainty in climate and habitat response.

3. Results

3.1. NATIONAL AND ROCKY MOUNTAIN DAMAGE FUNCTIONS

Although different climate models project different localized patterns of warming,
linear damage functions based upon diverse climate models were well-constrained
with high r2 values and narrow confidence intervals (Table III). As such, average
U.S. temperature changes were a useful indicator of the aggregate effects of U.S.
climate change on cold-water habitat at smaller spatial scales. Damage functions
indicated an incipient (≥5%) national temperature threshold for loss of cold-water
habitat of 0.6 ◦C, with habitat decreasing by 8.3% for every 1 ◦C increase in average
U.S. JJA temperature (Table III, Figure 1). The Rocky Mountain region was more
sensitive to the effects of climate change than the nation as a whole. The incipient

TABLE III

Damage function statistics for cold-water habitat based upon least-squares linear regression. Ag-

gregate damage functions among multiple species were calculated for the U.S. as a whole as

well as the Rocky Mountain region. Species-specific damage functions are based upon national

assessments. Thresholds were defined as the temperature change associated with a ≥5% reduction

in current habitat.

Cold-water Habitat loss/◦C Threshold

habitat (99.9% confidence limits) r 2 p (◦C)

National 8.3 (6.9–9.7) 0.95 <0.0001 0.6

Rocky Mountains 13.8 (11.6–16.1) 0.98 <0.0001 0.4

Brook trout 8.8 (7.2–10.4) 0.94 <0.0001 0.6

Cutthroat trout 7.9 (6.5-9.2) 0.95 <0.0001 0.6

Rainbow trout 7.8 (6.3–9.2) 0.94 <0.0001 0.6

Brown trout 8.2 (6.7–9.6) 0.95 <0.0001 0.6

Chum salmon 8.2 (6.6–9.7) 0.94 <0.0001 0.6

Pink salmon 9.5 (7.7–11.2) 0.94 <0.0001 0.5

Coho salmon 8.6 (7.0–10.1) 0.95 <0.0001 0.6

Chinook salmon 7.9 (6.3–9.4) 0.94 <0.0001 0.6
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Figure 1. Response of U.S. of cold-water habitat to June/July/August temperature change. Individual

data points are based upon published responses of cold-water habitat to various climate change

scenarios. The modeled damage function was calculated by least-squares linear regression (Table III).

Figure 2. Response of Rocky Mountain region cold-water habitat to June/July/August temperature.

Individual data points are based upon published responses of cold-water habitat to various climate

change scenarios. The modeled damage function was calculated by least-squares linear regression

(Table III).

threshold for loss of cold-water habitat in the Rocky Mountains was 0.4 ◦C, with
habitat decreasing by 13.8% for every 1 ◦C increase in average U.S. JJA temperature
(Table III, Figure 2).

Species-specific damage functions indicated nearly identical incipient national
temperature thresholds for habitat loss among species. Incipient thresholds ranged
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TABLE IV

Probability distributions for future June/July/August temperature change in the United States using

different weighting techniques. The EQUAL and EQUAL/Scenario distributions apply equal weight-

ing to model results. The SENS and SENS/Scenario distributions are weighted based upon model

effective climate sensitivities (Table II). The REA and REA/Scenario distributions are weighted based

upon model performance (Giorgi and Mearns, 2002, 2003). The EQUAL/Scenario, SENS/Scenario

and REA/Scenario distributions also have weights applied to the emissions scenarios (Table I).

Projected �T

2025 Median 2050 Median 2100 Median

Distribution (95% confidence limits) (95% confidence limits) (95% confidence limits)

EQUAL 1.5 (0.9–2.1) 2.6 (1.6–4.0) 3.6 (1.4–7.8)

EQUAL/Scenario 1.4 (0.9–2.1) 2.6 (1.6–3.9) 3.6 (1.4–7.4)

SENS 1.5 (0.9–2.1) 2.6 (1.6–4.1) 3.7 (1.4–8.0)

SENS/Scenario 1.5 (0.9–2.1) 2.6 (1.6–3.9) 3.6 (1.5–7.5)

REA 1.4 (1.4–1.6) 2.6 (2.4–3.2) 3.5 (2.2–5.9)

REA/Scenario 1.5 (1.4–1.6) 2.5 (2.4–3.2) 3.5 (2.2–5.8)

from 0.5 to 0.6 ◦C, with median habitat decreases of 7.8–9.5% for every 1 ◦C in-
crease in average U.S. JJA temperature (Table III). Rainbow trout was the least
sensitive species and Pink salmon was the most sensitive.

3.2. PROBABILITY DISTRIBUTIONS FOR FUTURE U.S. WARMING

The probability distributions for future warming in 2025, 2050, and 2100 reflect the
temporal influence on climate change uncertainty (Table IV). The distributions for
2025 were relatively well constrained, with the 95% confidence interval spanning
approximately 1 ◦C for the EQUAL and SENS distributions and 0.2 ◦C or less for
the REA distribution. However, by 2100, disparities among different emissions
scenarios and model climate sensitivities contributed to a much greater degree of
uncertainty, with the range associated with 95% confidence limits increasing to
approximately 6.0 ◦C for the EQUAL and SENS distributions and 4.0 ◦C for the
REA distribution. One important artifact of the use of the SRES scenarios to repre-
sent the uncertainty in future emissions, is the counterintuitive result that the lower
95% confidence limit for U.S. temperature change is higher in 2050 than in 2100.

The application of different weights to model results had a varying influence
on the resulting probability distributions for future U.S. JJA temperature change
(Table IV). The SENS distribution was nearly identical to the EQUAL distribu-
tion, across all time periods. However, the REA distribution was consistently nar-
rower than either the EQUAL or SENS distributions as indicated by higher lower
95% confidence limits and lower upper 95% confidence limits. Ranges for median
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warming projected among different probability distributions in 2025, 2050, and
2100 were 1.4–1.5 ◦C, 2.5–2.6 ◦C, and 3.5–3.7 ◦C, respectively, indicating a high
degree of similarity in median warming among different weighting approaches. The
weighting of emissions scenarios had negligible influence on resulting probability
distributions, as the EQUAL/Scenario, SENS/Scenario, and REA/Scenario distri-
butions were nearly identical to those of EQUAL, SENS, and REA, respectively.
The exceptions being the EQUAL/Scenario and SENS/Scenario distributions in
2100, for which projected temperature changes at the upper 95% confidence lim-
its were reduced by approximately 0.5 ◦C compared to the EQUAL and SENS
distributions.

Probability distributions for the WRE scenarios indicated that mitigation efforts
would have modest benefits with respect to reducing future temperature change
over the 50–100 year time frame, but no direct benefits over the next 25 years
(Table V). Probability distributions for the 2025 EQUAL-350/550/750 and SENS-
350/550/750 distributions were less than 0.3 ◦C cooler at the 2.5, 50, and 97.5th
percentiles than their corresponding distributions in the absence of mitigation. Me-
dian warming in 2050 for the stabilization distributions was also only moderately
reduced under the WRE constraints, with median and 97.5th percentile warming
dropping by up to 0.6 ◦C and 1.2 ◦C, respectively, for the WRE350 constraint. By
2100, however, even under the WRE750 constraint, median and 97.5th percentile
warming was reduced by approximately 0.4 ◦C and 2.6 ◦C, respectively. Median

TABLE V

Sensitivity of probability distributions for future June/July/August temperature change in the

United States to different mitigation scenarios. The EQUAL and SENS distributions are identical

to those in Table IV. The EQUAL-350/550/750 and SENS-350/550/750 distributions represent

projected temperature change under CO2 mitigation cases, where future radiative forcing was

capped based upon radiative forcing associated with the WRE350/550/750 emissions pathways.

The REA distribution is not included due to insufficient sample size under some of the mitigation

scenarios. No weighting was applied to emissions scenarios.

Projected �T

2025 Median 2050 Median 2100 Median

Distribution (95% confidence limits) (95% confidence limits) (95% confidence limits)

EQUAL 1.5 (0.9–2.1) 2.6 (1.6–4.0) 3.6 (1.4–7.8)

EQUAL-750 1.5 (0.9–2.0) 2.4 (1.0–3.6) 3.2 (1.3–5.4)

EQUAL-550 1.4 (0.9–2.0) 2.6 (1.4–3.5) 2.6 (1.3–4.6)

EQUAL-350 1.3 (0.8–1.8) 2.1 (1.0–2.9) 1.7 (0.9–2.5)

SENS 1.5 (0.9–2.1) 2.6 (1.6–4.1) 3.7 (1.4–8.0)

SENS-750 1.5 (0.9–2.0) 2.4 (1.1–3.7) 3.3 (1.4–5.4)

SENS-550 1.4 (0.9–2.0) 2.4 (1.4–3.5) 2.7(1.3–4.6)

SENS-350 1.3 (0.8–1.8) 2.0 (1.1–2.9) 1.8 (0.9–2.5)
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warming under the WRE550 constraint was approximately 1 ◦C less than that asso-
ciated with the no mitigation distributions (Table V), consistent with other studies
(Dai et al., 2001), and 97.5th percentile warming was reduced by approximately
3.5 ◦C. For the WRE350 constraint, median temperature change was reduced by
approximately 2 ◦C (50%), and the projected warming associated with the 97.5th
percentile was approximately 5.5 ◦C lower than in the no mitigation distributions.

3.3. RISK ANALYSIS

Median impacts projected for current U.S. cold-water habitat were quite compa-
rable among different probability distributions for U.S. JJA temperature change
(Figure 3). Median effect levels for 2025 were approximately 12% across distri-
butions. By 2050 and 2100, median impacts were projected of 21% and 29–31%,
respectively. However, confidence intervals indicated that habitat loss well below
and above median effect levels is possible. For example, 2100 habitat loss at the
upper 95% confidence interval for the EQUAL and SENS distributions was approx-
imately twice median effect levels. Despite the consistency in results for median
effect levels, the probability of different magnitudes of habitat loss did vary among

Figure 3. Median and 95% confidence limits for the effects of future climate change on current U.S.

cold-water habitat in 2025, 2050, and 2100 for various probability distributions for June/July/August

temperature change (Table 4).
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Figure 4. Median and 95% confidence limits for the effects of future climate change on current

Rocky Mountain cold-water habitat in 2025, 2050, and 2100 for various probability distributions for

June/July/August temperature change (Table IV).

different probability distributions for temperature change (Figure 3). The range of
uncertainty associated with projected habitat loss was consistently greater for the
EQUAL, EQUAL/Scenario, SENS, and SENS/Scenario distributions relative to the
REA and REA/Scenario distributions, as were the upper 95% confidence intervals
for habitat loss.

The magnitude of impacts to Rocky Mountain cold-water habitat projected in re-
sponse to U.S. climate change were considerably larger than those projected for the
nation as a whole, although this may have been due to methodological differences
rather than greater inherent sensitivity of the Rocky Mountain habitat to temperature
change. Median effect levels for 2025 were 20–21% across temperature distribu-
tions (Figure 4). By 2050 and 2100, median effect levels increased to 32–36% and
48–51%, respectively. Again, however, the probability of different magnitudes of
habitat loss varied among different probability distributions for temperature change
(Figure 4). The EQUAL, EQUAL/Scenario, SENS, and SENS/Scenario distribu-
tions indicated that habitat loss as high as 55–60% is possible by 2050, whereas
97.5th percentile losses for REA and REA/Scenario were 44–48%. By 2100, all
distributions indicated the potential for considerable habitat loss of 85–100% in the
Rocky Mountain region.
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Figure 5. Effects of future climate change on species-specific cold-water habitat in 2100 for various

probability distributions for June/July/August temperature change (Table IV). Horizontal columns

represent median effects and error bars represent upper 95% confidence limits.

Results for the eight individual species for which damage functions were con-
structed indicated that the magnitudes of habitat loss for specific species were quite
comparable to aggregate national risks. Median effect levels in 2025 ranged from
10–14% among species, and median effects for individual species in 2025 were
identical regardless of the temperature distribution used to estimate risk. Median
effect levels increased to 27–35% by 2100 (Figure 5), and median effects associ-
ated with the REA and REA/Scenario distributions for 2100 were 1–2 percentage
points lower than for the other distributions. However, as with the national aggre-
gate results, higher magnitudes of habitat loss were possible at lower probabilities
(Figure 5). Pink salmon demonstrated the largest potential for habitat loss among
the eight species evaluated, with Rainbow trout and Chinook salmon having the
lowest potential, consistent with species-specific damage functions (Table III).

Due to the sensitivity of current-cold-water habitat to U.S. temperature change,
the effects of mitigation scenarios over the 21st century on reducing the risk
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Figure 6. Median and 95% confidence limits for the effects of future climate change on current U.S.

cold-water habitat in 2025, 2050, and 2100 under no mitigation and WRE mitigation scenarios using

the EQUAL and SENS weighting schemes (Table V). Due to the similarities between EQUAL and

SENS probability distributions for June/July/August temperature change, results are presented as the

mean habitat loss for the two distributions.

associated with climate change were modest. Analysis of the sensitivity of cold-
water habitat to mitigation scenarios indicated that the benefits of mitigation were
highly time dependent. Out to 2025, the projected median habitat loss was reduced
by only a few percentage points in response to the WRE scenarios, and the WRE350
scenario was equally as effective at reducing habitat loss as WRE750 (Figure 6).
By 2050, however, the relative benefits under different mitigation scenarios became
more apparent, with WRE350 reducing habitat loss by 30%, relative to 20% for
WRE550/750. By 2100, WRE350/550/750 reduced habitat loss by 50%, 25%, and
15%, respectively. Reductions were even greater at the upper 95% confidence limit,
with reductions in habitat loss of approximately 65%, 40%, and 30%, respectively.
Comparable reductions in risk were obtained for the Rocky Mountain region and
for specific species at the national level.

Perhaps more important than the impact distributions, however, was the proba-
bility of exceeding various magnitudes of effect. For example, the results of Monte
Carlo simulations indicated that it is virtually certain that the incipient thresholds
(≥5%) for U.S. and Rocky Mountain cold-water habitat loss will be exceeded as
early as 2025 (Table VI). In fact, results indicate that in the absence of mitigation,



RISK-BASED REANALYSIS OF COLD-WATER HABITAT

TABLE VI

Probabilities (as a percent) of exceeding the incipient (≥5%) as well as a series

of other arbitrary thresholds for cold-water habitat loss assuming no mitigation

or CO2 mitigation cases, where future radiative forcing was capped based upon

the radiative forcing associated with the WRE350/550/750 emissions pathways.

Probabilities represent mean results for the EQUAL and SENS distributions. The

REA distribution is not included due to insufficient sample size under some of the

mitigation scenarios. No weighting was applied to emissions scenarios.

Threshold habitat loss

5% 10% 25% 50% 75%

National

No mitigation 100 100 69 12 1

750 ppmv 100 99 56 1 0

550 ppmv 100 98 40 0 0

350 ppmv 100 73 0 0 0

Rocky mountains

No mitigation 100 100 93 52 20

750 ppmv 100 100 89 35 4

550 ppmv 100 100 83 16 0

350 ppmv 100 100 40 0 0

losses of 10% are certain at both the national and regional level. Probabilities of
higher magnitudes of habitat loss generally increased as the threshold level in-
creased. Losses of 25% were more likely than not at both the national and regional
level. The likelihood of losses of 50% was relatively low (∼10%) at the national
level, while losses of 75% or more had a probability of 1% or less. In contrast,
for the Rocky Mountain region, there was even chance of losses of 50% or more,
and losses of 75% or more, though only approximately 20%, were certainly not
negligible, particularly relative to the consequence.

Risk management in the form of different GHG stabilization pathways had a
marked effect on the risk of exceeding various thresholds, although that effect was
highly dependent on the stringency of the threshold under consideration. For exam-
ple, even under a 350 ppmv stabilization case, the likelihood of remaining below
the ≥5% incipient threshold was effectively zero at both the national and regional
level. At more moderate thresholds, such as a 25% loss of habitat, mitigation was
quite effective at the national level, effectively eliminating risk altogether for a
350 ppmv stabilization scenario. Although risk reduction of this magnitude was
not observed for the Rocky Mountain region, a 350 ppmv stabilization scenario
was sufficient to reduce the risk of exceeding a 25% threshold to less than 50%.
The likelihood of exceeding higher thresholds such as 50–75% habitat loss, were
moderate to low even in the absence of mitigation at both the national and regional
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level, and thus relatively modest stabilization scenarios (i.e., 550–750 ppmv) were
sufficient to reduce the risk of exceeding these thresholds to low levels.

4. Discussion

A number of impact assessments of the effects of climate change on cold-water
fish habitat in the United States have previously demonstrated that such habitat is
potentially highly sensitive to climatic change, and thus future changes in climate
pose a hazard to fish populations dependent upon such habitat, and, subsequently,
U.S. biodiversity in general (Eaton and Scheller, 1996; Keleher and Rahel, 1996;
Rahel et al., 1996; O’Neal, 2002; Poff et al., 2002; Mohseni et al., 2003). How-
ever, the risk associated with these hazards has remained undefined with respect to
the likelihood that adverse effects would occur, the timing associated with those
effects, and their magnitude. All of these are important quantifications if one is
to develop an understanding of the consequences of climate change and, subse-
quently, design environmental management strategies that are robust with respect
to risk. Acquiring this information, however, necessitates risk based-approaches to
impact assessment that can incorporate uncertainty in relevant variables and yield
probabilistic estimates of the effects of climatic change.

Here, multiple studies were used to construct damage functions for cold-water
habitat in the United States and the Rocky Mountains. Such damage functions
enable one to ask “what if” questions regarding the response of resources to hypo-
thetical changes in climate. They are also useful for estimating threshold climate
changes for adverse effects, also sometimes referred to as “critical levels” (Swart
and Vellinga, 1994). For example, damage functions in the current study suggested
threshold (≥5%) effect levels for incipient U.S. and Rocky Mountain cold-water
habitat occur for warming as low as 0.6 ◦C and 0.4 ◦C, respectively. This suggests
that preventing adverse effects of climate change on current cold-water habitat loss
would necessitate limiting future warming in the United States to levels comparable
to those observed over the 20th century (∼0.6 ◦C; NAST, 2000). This is an un-
likely proposition, even with aggressive efforts to reduce GHG emissions (Wigley,
2005).

A number of authors have previously expressed uncertainty in future changes
in climate, including precipitation as well as temperature, on global and regional
bases, using probability distributions (Wigley and Raper, 2001; Giorgi and Mearns,
2003; Webster et al., 2003; Mastrandrea and Schneider, 2004). The principle drivers
of uncertainty in these efforts have been climate sensitivity and future GHG emis-
sions, although a range of other uncertainties including carbon cycle and aerosol
effects also exist and may have a significant influence as well (Wigley and Raper,
2001). Estimates for 95% confidence intervals for future global temperature change
range from approximately 1.0–4.9 ◦C (Webster et al., 2003) to 1.5–5.3 (Wigley and
Raper, 2001), with median warming ranging from 2.4–3.1 ◦C. The current study
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utilized an ensemble of climate models to generate probabilistic estimates of fu-
ture climate change in the United States, which is projected to experience higher
mean warming than the global average (Wigley, 1999). The extent to which the
probability distributions in the current study represent the full range of uncertainty
in future temperature change is limited to the ability of the climate models in the
ensemble to span the full range of climate sensitivity and GHG emissions. The
range of climate sensitivities of the seven climate models used in the current study
represents approximately 90% confidence intervals for climate sensitivity, based
upon IPCC’s estimated range (Morgan and Keith, 1995; IPCC, 2001). More recent
studies have suggested this may be an underestimate of the actual uncertainty (For-
est et al., 2002; Murphy et al., 2004; Stainforth et al., 2005). Similarly Webster et al.
(2002) previously reported that the SRES scenarios represent most, but not all, of
the actual uncertainty in future emissions. As a result, the extremes of both climate
sensitivity and GHG emissions are likely underrepresented in the current proba-
bility distributions, although median temperature changes are relatively robust and
agree well with other analyses.

Probabilities were assigned to ensemble model results using either raw, un-
weighted model results or model results weighted based upon model effective
climate sensitivities or using the REA methodology, whereby model probability
is a function of how well a particular model reproduces historical climate condi-
tions and converges upon an ensemble average for future climate. Using the REA
method, Giorgi and Mearns (2003) generated a probability distribution for 2100 JJA
temperature change for the western and central United States ranging from approx-
imately 2.5–8.5 ◦C, with a median of just under 5.0 ◦C. This is generally consistent
(albeit with a higher median) with the EQUAL distribution (1.4–7.8 ◦C) generated
in the current study, but Giorgi and Mearns (2003) utilized a larger number of cli-
mate models and only two emissions scenarios (SRES, A2 and B2), making the
results difficult to compare. In any case, model ensembles may be a convenient
method to estimate probability distributions for future climate conditions, given
the availability of simple climate models and climate model data.

In the current study, the implications of different approaches for generating prob-
ability distributions for JJA U.S. temperature change varied depending upon the time
period under consideration. Out to at least 2025, the range of uncertainty associated
with future temperature change was relatively small. This suggests that temperature
change, and downstream impacts, over short time-scales can be known to a relatively
small degree of uncertainty. Beyond 2025, the uncertainty in temperature change
expanded considerably, indicating the difficulty in drawing conclusions about cli-
mate change impacts far in advance. Estimated uncertainty was consistently much
reduced using the REA weighting methodology, as indicated by the narrower 95%
confidence interval for JJA temperature change. Both the upper and lower tails of the
REA and REA/Scenario distributions were constrained, resulting in reduced warm-
ing at the upper 95% confidence limits as well as increased warming at the lower
95% confidence limits relative to the EQUAL and EQUAL/Scenario distributions.
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Due to the narrower confidence intervals, REA may be a useful tool for reducing
uncertainty in the analysis of model ensembles by filtering improbable results from
models with high margins of error. These constrained confidence intervals are a
function of REA’s strong bias in favor of model results that demonstrate low error
relative to historical observations and/or are consistent with other models. This lat-
ter criterion tends to result in a strong bias in favor of median model results. Further,
because there is no way to validate the success with which the model reliability
criteria used in the REA approach reflect the relative ability of models to faithfully
project future climate conditions, the REA methodology may simply be masking
rather than reducing uncertainty, which would be a detriment rather than a benefit
to impact assessment and risk management. Weighting of models based upon effec-
tive climate sensitivities had negligible effects, despite a close correlation (>0.8)
between projected temperature change and climate sensitivity among the seven cli-
mate models. The effects of weighting emissions scenarios had a limited effect on
future JJA temperatures, although the upper 95% confidence interval 2100 JJA tem-
perature change in the EQUAL/Scenario and SENS/Scenario distributions were ap-
proximately 0.5 ◦C lower than in the EQUAL and SENS distributions, primarily due
to a bias against the A1Fi scenario (Table I). Overall, the use of different weighting
schemes indicates that the risk assessment was generally robust to a range of a priori
assumptions about the relative likelihood of different model parameterizations.

The integration of habitat damage functions with probability distributions for
future climate change in the current study indicated that the probability that declines
in the current distribution of cold-water habitat, and the species they contain, is
virtually certain as early as 2025. Furthermore, the magnitude of current cold-
water habitat that is likely to be lost from its current geographic range over the
next century is substantial. Median effect levels for 2025, 2050, and 2100 suggest
habitat loss in the United States on the order of 10, 20, and 30%, respectively. Even
greater effects are projected for the Rocky Mountain region, with median effect
levels of approximately 20, 30, and 50%, respectively.

The analysis of risk in response to GHG mitigation efforts in the form of con-
straining future emissions below the WRE stabilization pathways over the 21st
century indicated that such an effort would have little influence on ameliorating
the risk of cold-water habitat loss, particularly over the short-term. Out to at least
2050, the risks associated with the mitigation pathways were comparable to no
mitigation cases, reflecting the fact that future global temperature changes are rel-
atively insensitive to mitigation efforts over the next several decades (Stott and
Kettleborough, 2002). By 2050, substantive reductions in median effects levels
were only observed under the WRE350 constraint. By 2100, median national risks
were reduced by 20, 30, and 60% in response to the WRE350/550/750 constraints,
respectively. However, median habitat loss remained above 10% even under the
WRE350 constraint.

The challenge for risk management, however, is the interpretation of impacts
and risk away from the median. For example, the current study indicates that the
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incipient effect threshold of ≥5% loss of habitat is virtually certain in the near future
with or without mitigation efforts. This is a function of the warming, and thus im-
pacts, to which the global climate system is already committed. Even assuming no
future change in atmospheric composition, the projected warming over the 21st cen-
tury is comparable to the temperature threshold for incipient habitat loss (Wigley,
2005). However, it is arguable whether such incipient effects are ecologically or
economically relevant, or even detectable in natural systems. Thus, stakeholders
may be much more interested in thresholds of greater relevance to management
goals. For example, habitat losses of 25% are sufficient to have detectable ecologi-
cal or economic consequences, and in a no mitigation future, such losses have a high
probability of occurrence. Yet, risk analysis using stabilization scenarios suggests
that mitigation can significantly reduce the risk of such losses (Table VI). Perhaps
of greatest importance from a management perspective is the ability of mitigation to
effectively eliminate the low, but non-negligible risk associated with truly high mag-
nitudes of habitat loss (i.e., >50%). Even a stabilization level of 750 ppmv, which
is well above recent estimates of dangerous climate change or GHG levels (O’Neill
and Oppenheimer, 2002; Hansen, 2005), is an effective hedge against such high
magnitudes of habitat loss. Reaching consensus, however, on what levels of impact
are to be avoided, the associated risk that stakeholders are willing to accept, and the
willingness to pay to manage climate change and natural resources to address resid-
ual risk, is a fundamental challenge in the climate change debate. Nevertheless, the
examination of the effects of different risk management strategies is an important,
but often neglected, consideration in impact assessment (Arnell et al., 2002; Swart
et al., 2002). Few attempts have been made to quantitatively assess the potential
for mitigation to reduce the likelihood of exceeding a particular impact threshold,
and no studies have assessed the role of adaptation in this regard (Jones, 2004).

The disparity in results between the Rocky Mountain region and the United
States may reflect the influence of geographic scale, but may also simply be an
artifact of differences in the methods of those studies used to generate damage
functions. National estimates of resource sensitivity or risk to climate change pro-
vide a first-order approximation of the potential effects of climate change, but such
analyses may not be representative of effects at smaller spatial scales, where the
consequences as well as the implementation of management strategies are more
critical. The current results suggest that the high-elevation, cold-water habitat of
the Rocky Mountain region will be disproportionately affected by climate change.
Yet this is not a robust conclusion because the damage functions for the Rocky
Mountain region were based upon studies utilizing a linear stream temperature
model whereas the majority of data points for the aggregate U.S. damage function
were based upon a non-linear model. Mohseni et al. (1998) found that non-linear
models are a better fit to the air/stream temperature relationship, and that linear
models tend to overestimate stream temperature changes, particularly for higher air
temperatures. As a consequence, the results from the Rocky Mountain region are
not directly comparable to those of the United States as a whole.
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An interesting question raised by the use of probability distributions for U.S.
temperature change in the current study is the extent to which they increase the
information associated with impact assessment beyond what can be obtained using
scenarios alone. For example, median effects by 2025, 2050, and 2100 of 12–13, 21,
and 29–30%, respectively, corresponded quite closely with average habitat loss in
2030, 2060, and 2090 reported by O’Neal (2002) of 10, 19, and 28%, respectively.
This suggests that ensemble averaging may be an effective methodology for esti-
mating likely effects associated with different magnitudes of temperature change.
Scenarios, however, are not necessarily capable of estimating the probability of a
particular magnitude of effect, such as that which might be identified as of con-
cern to stakeholders. Similarly, scenarios cannot identify the risk associated with
“low probability/high consequence” or “low probability/no consequence” events
important to risk management decisions. For example, Eaton and Scheller (1996)
projected cold-water habitat loss of approximately 50% in response to an equilib-
rium doubling of atmospheric CO2. The current study enables one to place these
estimates in context, and indicates that losses of this magnitude (or even greater)
are indeed possible over the 21st century, but at relatively low probabilities (∼10%
chance regardless of the weighting scheme used). Nevertheless, given a range of
scenarios generated by diverse climate models driven by diverse emissions scenar-
ios, scenarios can likely generate credible estimates of at least the central tendency
of climate change effects.

A critical limitation of existing studies on climate change effects on fish habi-
tat is their tendency to express climate change effects relative to current habitat,
as opposed to quantifying net habitat changes. Particularly for cold-water habitat,
current methods identify areas where species ranges contract, but are less thorough
in identifying potential areas of species’ range expansion. Invariably, changes in
climate conditions will decrease the suitability of some areas, but others should
become more suitable. In addition, given the availability of thermal-tolerant geno-
types, long-term physiological adaptation of fish populations may ameliorate the
net effects of climate change (Etterson and Shaw, 2001; Stillman, 2003). Mohseni
et al. (2003) also examined changes in warm-water habitat in the United States,
and projected average increases of 31.4% relative to current habitat, comparable
to habitat loss for cold-water species. Such results demonstrate the variability of
species responses to climate change and the existence of ecological winners and
losers. However, although warmer temperatures may offer a competitive advantage
to some species with higher thermal tolerances, the loss of available cold-water
habitat is indicative of reduced aquatic biodiversity in the future.

In addition, a number of authors have commented that other anthropogenic alter-
ations of the environment, such as land-use change, development, and damning of
streams and rivers, limit dispersion options for existing populations, making migra-
tory adaptation to climate change more difficult, while simultaneously introducing
other stressors to aquatic ecosystems (IPCC, 2002; Poff et al., 2002). Impact as-
sessments limited to the future effects of climate change are not necessarily suitable
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for projecting the future status of ecological resources, as a broad range of drivers
may interact to directly and indirectly affect species populations. Although analyses
such as the current one indicate that temperature changes are likely to be a major
driver of fish habitat changes at large geographic scales, at the more local level,
other drivers such as habitat fragmentation, changes in water use and management,
and invasive species may be more dominant drivers or may interact additively or
synergistically with climate change (Sala et al., 2000; Novacek and Cleland, 2001;
Kolar and Lodge, 2002; Thomas et al., 2004). Also, future changes in precipitation
patterns will likely affect the distribution and abundance of aquatic species, yet
the majority of studies to date have focused exclusively on the quantification of
temperature effects. As a consequence, it remains difficult to project the net effects
of climate change on species distributions and biodiversity or the future status of
those species.

Despite such limitations, the current study demonstrates the utility of using
probabilistic metrics of climate change impacts, particular with respect to its ability
to assign likelihood to consequence. Given wider recognition of the potential value
of risk-based methods for impact assessment, more focused attempts to express the
results of impact assessments as sensitivity or damage functions, and more focus on
methods for expressing climate uncertainty in probabilistic terms, risk analysis may
become a routine analysis tool. A number of authors have already commented on the
value of methodologies for creating damage functions and identifying thresholds
for climate change (Swart and Vellinga, 1994; Parry et al., 1996; Toth et al., 2000;
Jones, 2001), although these have largely been in the context of defining the concept
of “dangerous interference” within Article II of the United Nations’ Framework
Convention on Climate Change (UNFCCC, 1992). In addition, proposals for risk-
based frameworks for impact assessment have emerged (Jones, 2001; Willows and
Connell, 2003; Jones and Mearns, 2005). Such efforts represent important attempts
to develop an approach to impact assessment that can not only identify potential
hazards associated with climate change, but also aid in development of strategies
for risk management. However, considerable work remains in the development
of tools for probabilistic exposure analysis that can be utilized by ecologists and
resource managers. In the absence of probabilistic information on the consequences
of climate change, attempts to quantify the consequences of climate change can
be ambiguous. Such ambiguity can lead to erroneous conclusions regarding risk
and consequence, and ultimately paralyze decision-making due to the absence of a
context in which different management options can be weighed.
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