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Abstract

Modeling at the landscape scale is most relevant to quantify and understand landscape structure
and dynamics. The existing landscape models encompass static empirical models, dynamic point
and area models, dynamic regionalized and spatially linked spatio-temporal (SLST) models. The
latter take into account both local dynamics and spatial interactions.

This chapter discusses various SLST model concepts and approaches that are applied in land-
scape research. SLST models are typically used to (1) advance general ecological theory, (2) test
specific landscape-ecological hypotheses, (3) run scenario-simulations, and (4) derive decision
support for landscape management. We present three case studies that illustrate the use and limi-
tations of generic and complex SLST models. In the first case study we employ SLST models to
explain the formation of forest-landscape patterns. The second and third case study highlight the
use of SLST models to analyze the spread of tree-species during the Holocene and to identify
landscape functions for management purposes. Finally, major challenges in the field of spatio-
temporal landscape modeling, scaling issues and model testing are discussed.

Keywords: landscape models, spatio-temporal modeling, spatially linked spatio-temporal models;
SLST models.
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Modeling landscape patterns and dynamics

Landscape patterns (landscape heterogeneity) are the result of various drivers acting on the
landscape. Drivers include exogenous factors, endogenous processes, or both (Bolliger 2005;
Bolliger et al. 2003; Patten et al. 1997). In most natural systems both endogenous processes and
exogenous factors influence landscape dynamics. Exogenous landscape drivers are climate,
soil, or disturbances (e.g., fire, floods). Endogenous processes involve interactions between
landscape elements and are usually of biotic nature (e.g., trophic interactions, competition
between or within species). These interactions generate small variations between time steps
and locations that finally accumulate and lead to pattern formation (Bak 1996; Bak et al. 1987).
In environmentally extreme habitats (e.g., desert, arctic, extreme pH values in soils) landscape
dynamics are likely to be primarily driven by exogenous factors. Habitats with relatively con-
stant environmental heterogeneity between and within years (e.g., rainforests), are primarily
driven by endogenous interactions (Solé et al. 2002; Solé and Manrubia 1995).

Interactions between the various drivers of landscape patterns and dynamics can be linear,
non-linear, unidirectional or form positive (mutuality, self-reinforcing) or negative feed-
backs (e.g., self-inhibition). Nonlinear and feedback interactions have been reported to be a
primary source of structure or patterning in many kinds of natural systems (Bascompte e al.
2003; Bascompte and Sole 1995; Farkas et al. 2002; Green 2000). These complex interactions
between endogenous and exogenous drivers of landscape patterns make intuitive under-
standing or direct assessments of likely cause-and-effect relationships difficult. One way to
quantify and predict spatially dynamic patterns and their underlying processes at the land-
scape scale is to use mathematical or computer models (cf. Richter e al. 2002). These are
implementations of conceptual models on the basis of empirical observations and experi-
ments using the generic and uniform language of mathematics (see Seppelt (2003). Models
integrate current knowledge about interactions and influences of drivers, rank it, point to
inconsistencies and uncertainties, and make simplifications explicit.

Landscape models formulate interactions within and between landscape elements and/or
with environmental factors in space and time. By doing so, landscape models are able to
relate spatial and temporal pattern to exogenous and endogenous drivers. Depending on the
research question, the extents to which landscape models are applied range from one square
meter to entire continents. Beyond interpretation of data, landscape models allow scenario
testing by assessing various degrees of changes on a particular landscape. This may lead to
confirmation, rejection, or generation of hypotheses and support environmental decisions
and policy making.

In this chapter, we discuss mathematical models and computer programs that generate
quantitative descriptions of landscapes in space, time or both. The chapter is an overview of
a variety of landscape model approaches that are based on different model concepts, tem-
poral and spatial resolutions, and levels of complexity. Special emphasis is given to the
spatially linked spatio-temporal landscape (SLST) models.

Types of landscape models

Although there is no generally applicable model-classification scheme, a number of model
types can be distinguished based on various aspects of the modeling approach, ranging from
purely conceptual, descriptive word and graphic models to semi-quantitative graphical
schemes, , mathematically formalized models to computer programs yielding quantitative
descriptions. These model types differ particularly in the way landscape heterogeneity is
taken into account.
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Often, static modeling approaches are the basis of large-scale spatial predictions. These
approaches assume that the landscape is in equilibrium with the environment, as they do not
account for transient adaptation phases. A static model Y(s;) = f(X(s;)) links observed state
variables Y, (biotic units, e.g., trees), to exogenous factors X (e.g., climate) at positions s; in
the landscape. The simulated landscape heterogeneity is thus a simple mapping of the het-
erogeneity of the exogenous factors. The link between state variables and exogenous factors
is often performed using various regression approaches (reviews in Bakkenes et al. 2002;
Guisan and Zimmermann 2000) ranging from logistic regression (Bolliger et al. 2000) to
CART models (De ‘Ath and Fabricius 2000), or General Additive Models (Yee and Mitchell
1991). Applied at discrete timestep(s) ¢, the model yields Y(z,s;) = f(X(t,,s))).

Simulations from static models thus represent the spatially detailed distributions of the
biotic unit at individual timestep(s). Applications of this type of model include risk assess-
ments of global climatic change on vegetation distribution (Bolliger 2002; Bolliger et al. 2000;
Guisan and Theurillat 2000; Guisan et al. 1998), habitat suitability models for individual species
(Akgakaya et al. 1995; Guisan and Hofer 2003; Lindenmayer et al. 1991), for species groups
(Bonn and Schréder 2001), for communities (Peppler-Lisbach and Schréder 2004), cascades of
landscape filters (Poff 1997; Schroder and Reineking 2004), or biogeographic models
(Haxeltine and Prentice 1996; Holdridge 1947; Leemans and van-den-Born 1994; Neilson
1995; Prentice et al. 1992; Woodward and Smith 1994) for species, communities, or biomes. In
these models, the variable describing vegetation, is fitted to variables expressing ecophysio-
logical constraints, e.g., yearly day degree sum, maximum net ecosystem production (NEP) or
leaf area index which can be attained under the given moisture and nutrient conditions. These
vegetation models are sometimes combined with dynamic nutrient cycling models.

Advantages of static models include that they allow quick and easy calculations (re-
gressions). Since the predictions are given in a geographically explicit form, they are inter-
pretable as maps, e.g. in Geographical Information Systems (GIS). Spatial interactions may
be accounted for by applying methods that consider spatial autocorrelation (e.g., chapter 4.2
Spatial dynamics, Augustin et al. 1996). Static statistical models allow assessment of factors
and factor combinations that are relevant for a given landscape pattern, and are therefore in
many situations a good starting point for further modeling approaches. Static models imply,
however, that the ecosystems are in quasi-equilibrium, i.e. the transient behavior, the way in
which the equilibrium is attained, is not accounted for. Additionally, the basic mechanisms of
the spatio-temporal patterns are not explicitly included in statistical models. This limits
cause-and-effect analysis and restricts extrapolations to the range of the factors (in space
and time) where the model was calibrated (Lischke 2001; Lischke et al. 1998a; Peng 2000), as
in empirical models in general.

Dynamic models emerge from the concept that the landscape state is defined by change,
driven by exogenous factors and endogenous processes and interactions. Thus, dynamic
models take the transient nature of systems into account. They are based on assumptions
about the underlying processes and describe for specific localities the temporal change

(d—‘i Y(¢) in continuous time or Y(7;,;) — Y(1;) in discrete time) of the state variables Y (e.g., the
biomasses oftree species): (d—‘iY(t) =f(Y(1),X(1),¢). These models can be deterministic (& = 0)

or stochastic, i.e. take into account random influences (& =0).

A broad variety of dynamic landscape models are available. Among these, dynamic point
models describe the dynamics of the state variables for specific locations, thus points in
space through time. Dynamic point models include e.g. forest gap models (Botkin et al. 1972;
Bugmann 2001), which simulate the establishment, growth and death of single trees on small
patches and take into account the shifting mosaic of these patches created by stochastic
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death and birth processes of small subpopulations (e.g., Botkin et al. 1970). Other approaches
involve models that account for the spatial variability by using theoretical descriptions
(distributions or moment equations) (DisCForM; Lischke et al. 1998b; Picard and Franc
2001; Bolker and Pacala 1997). The obvious disadvantage of dynamic point models is that
they do not consider space explicitly. This, however, has the advantage that their simulations
are usually fast, require only small computer storage capacity and are able to simulate state
variables in a highly detailed form.

Dynamic area models simulate larger areas in a single simulation. However, spatial
heterogeneity is not taken into account, resulting in average representations of the proper-
ties of the area under consideration. In other models the state variables are structured with
regard to essential properties, e.g., areas of stand age and stand volume (see matrix model
EFISCEN, Nabuurs et al. 2000).

Advantages of dynamic models in general include that the temporal course of the state
variables is interpretable. A major disadvantage of dynamic point and area models is that
the simulations do not allow spatial interpretations of the results. In addition, highly
resolved temporal input data for larger spatial scales may not be readily available.

Dynamic regionalized (distributed) models incorporate landscape heterogeneity by
applying dynamic point or area models in parallel at many locations s;, €.g., on a grid:

(d—dt Y(ts) = f(Y(1s;), X(1,5)),¢). Thus, this model type combines spatial and temporal aspects

of the landscape. However, the simulated locations are not spatially linked, i.e., do not
communicate with each other. Applications of dynamic distributed models include e.g. the
evaluation of global change phenomena such as predicting the behavior and properties of
ecosystems at large scales under scenarios of possible future land use and climate. In the
following, several examples of dynamic, distributed models are discussed.

An example of an empirically derived forest model is MASSIMO (Kaufmann 2001; Thiirig
et al. 2005). The model simulates the growth of individual trees at any of the sample plots of
the Swiss National Forest Inventory on a 1.4*1.4 km grid, under different forest management
scenarios. Since the sample plots are very small (1ha) and thus not representative for the
surrounding areas, the simulation results are lumped into geographical and ecological strata.
An example of a big-leaf-model (Lexer 1995) is the biogeochemical model BIOME-BGC
(Thornton 1998; Thornton et al. 2002). The model enables the calculation of fluxes and pools
of carbon, water and nitrogen. These pools are extended over large areas; e.g., all leaves in a
region form one “big leaf”. In contrast to this coarse spatial and organizational resolution,
BIOME-BGC includes relatively detailed processes of photosynthesis, nutrient and carbon
re-allocation and partitioning, litter decomposition and a variety of mortality functions that
allow realistic simulations of ecosystem properties over decades. DGVMs (Dynamic global
vegetation models) (see comparison in Cramer et al. 2001) simulate the development of the
vegetation composition across the whole globe, based on ecophysiological processes and
nutrient cycling. Vegetation dynamics are based on annual net primary production and
biomass growth; they include competition among plant functional types, disturbances and
succession. Frame-based models (Starfield and Chapin 1996) simulate transitions between
vegetation types (“frames”) in grid cells on the regional to continental scale. The transition
probabilities are based on intrinsic state variables and on rules that depend on environmental
conditions. In some cases the transition probabilities are fitted to the results of gap models
(Acevedo et al. 2001). This approach assumes biomes to be fixed entities, thereby neglecting
the individualistic responses of species to changing environmental conditions (Davis 1986;
Kittel et al. 2000). Finally, patch models at many locations have been applied to assess suc-
cession details in a larger spatial context, either explicitly on a geographical transect (e.g.
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ForClim, Bugmann and Fischlin 1996) or in bioclimatic classes spanned by drought and day
degree sum (Loffler and Lischke 2001). Advantages of dynamic large-scale models and of
dynamic, distributed models include that the dynamic simulations can be interpreted spatially.
The lack of spatial communication between the dynamic simulations on the discrete land-
scape elements is, however, a disadvantage.

Dynamic, spatially linked spatio-temporal models (SLST models)

Introducing spatial communication in regionalized models leads to the group of dynamic,
spatially linked spatio-temporal (SLST) models, the focus of this chapter. Landscape el-
ements influence each other dynamically, not only locally, but also across larger spatial scales,
revealing that local dynamics and spatial interactions are crucial in assessing landscape
dynamics. Spatial interactions in natural systems and the models describing them occur at a
variety of scales. On smaller spatial scales, interactions occur by flow of resources, e.g. water
(Jakeman and Letcher 2003), or by competition for habitat or for resources, e.g., by lateral
shading as in some individual-based, position-dependent forest models (e.g., SORTIE
Pacala et al. 1993; Picard et al. 2001; SILVA Pretzsch 2002). On intermediate spatial scales,
interactions may be represented by active movement or passive dispersal (Clark and Ji 1995;
Neilson et al. 2005), of animals, plants, (e.g. by the formation of tillers) or (e.g., pathogens).
Movement or dispersal determines the rate and direction of spread. For example, different
seed dispersal mechanisms (e.g., ballistic, wind, animals) identify (together with generation
time and a variety of other factors) a plant species’ migration rate and direction. Variation in
migration rates is one process that generates landscape heterogeneity.

Dynamic spatio-temporal models that account for such spatial interactions between
locations z and the simulated location s (SLST models) take the form:

di[ Y(65) = f(Y(6,2), X(65),8), 1 = ... 1,

Same as all dynamic models, SLST models include time in the temporal change of the state
variables, either in discrete time steps (e.g., years, generations) or continuously. Spatial
dependencies (and thus spatial interactions) in SLST models are coded by making f depend
on a set of state variables Y(f,z;) from the neighborhood i = ,..., n,. The approaches to deal
with these spatial interactions vary considerably (Caswell and Etter 1993). Classical, spatially
implicit metapopulation models (Gilpin and Hanski 1991; Hanski 1999; Levins 1970) or
network models (Green 1995) deal with subpopulations on patches or network-nodes with-
out explicit positions. Distances are implicitly contained in transfer rates between the patches.
In some position-dependent models (e.g., Pacala et al. 1993; Picard et al. 2001; Pretzsch 2002;
Prevosto et al. 2003), explicit coordinates of the simulated biota are recorded. Other models
simulate the state variables on each location in the simulation domain, either continuously
(partial differential equation, reaction-diffusion, integral equation, integro-difference models,
see Renshaw 1991), or in the cells or on the nodes of grids (coupled map-lattices Bjgrnstad et
al. 1999; Kaneko 1992). A specific type of lattice models are cellular automata (see case study
1 and Bolliger 2005; Bolliger et al. 2003; Syphard et al. 2005; With and King 1999; With et al.
2002). In cellular automata, each cell can take several discrete states (e.g. one single individ-
ual of different species) defined by rules that depend on the states of the surrounding cells.

Comparable to other ecological models, SLST models differ in their degree of complexity
(generic/complex), in the organizational level (cells, individuals, biomes), in the relative
importance of endogenous processes and exogenous drivers, and in the general model
approach (deterministic vs. stochastic) (Bolliger et al. 2005).
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Applications of SLST models

SLST models are applied in various fields of landscape research where the processes and

interactions that generate a landscape pattern are of interest. They are used to answer

different types of research questions that can be subsumed under the following headings:

— Models to develop theories: What are the general mechanisms behind an observed land-
scape phenomenon?

— Generating and testing hypotheses: Why are landscapes as we observe them?

— Scenarios: What might happen, if... ?

— Projections: What might be in the future?

— Optimization and decision support for management: What is the best way to achieve a
goal?

These questions are used in the following to give an overview of typical SLST model appli-
cations. Note that, although usually models are initially developed for certain applications, in
many cases they can be attributed to several of these questions.

Models to develop theories: what are the general mechanisms behind an observed
landscape phenomenon?

SLST models are often applied to enhance the understanding of general mechanisms or
laws that drive landscape processes and patterns. Certain observable phenomena in land-
scapes may be related to specific conditions and processes of one particular landscape, but
may also be viewed as the result of general, even fundamental and universal mechanisms
applicable to various independent systems. The search for universality or generality is funda-
mental to the development of ecological theory and is one of the most important aims of
modeling studies (Green and Sadedin 2005; Jorgensen 1992). The models involved often
belong to the group of SLST models and are usually parsimonious, i.e. simulate landscapes
with very few generic and abstract variables and relationships.

The search for general phenomena in systems, including landscapes, often involves
complex systems theory (Milne 1998; Strogatz 2001; Wu and Marceau 2002). One aspect of
complex systems theory is self-organization. Self-organization originates from dynamic
interactions between system constituents which spontaneously lead to order and organiza-
tion in multi-component (complex) systems (Bak 1996; Perry 1995). A system self-organizes
to a critical state (SOC) if its dynamics lead to a state characterized by scale invariance (Bak
et al. 1987; Gisiger 2001; Solé and Manrubia 1995). Mathematically, scale invariance is
expressed by power laws (straight lines on a log-log scale) (see also Bolliger et al. 2005),
indicating that no particular scale (spatial, temporal) is singled out. This means in a spatial
context that large-scale patterns may be predicted from small-scale patterns and vice versa.
Scale invariance in a temporal context indicates that no particular time scale is singled out.
The phenomenon of scale invariance has been observed in many research disciplines, includ-
ing landscape ecology (Bolliger 2005; Bolliger et al. 2003; Cousens et al. 2004; Lennon et al.
2001; Milne 1998; Storch er al. 2002). However, empirical evidence for processes leading to
scale invariance is still largely missing (Levin 1998) and the observation of power laws does
not automatically imply that they have been produced by SOC (Allen et al. 2001; Li 2000a;
b). However, it has been stated that scaling relationships may offer clues and hypotheses to
how the fundamental processes of biology give rise to emergent diversity (Brown et al.
2002b). There is a wide range of modeling approaches to investigate complex systems, e.g.,
network models (Green 2000), partial differential equations with diffusion (Deutschman et
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al. 1993), or coupled map lattices (Green and Sadedin 2005). An example of a parsimonious
cellular automaton is presented in case study 1.

Other ecological theories where SLST models have played a crucial role include the
concepts of patch-dynamics (Levin et al. 1993; Steele 1993). Population movements, e.g., the
surprisingly fast migration of some plant species during the Holocene, have fascinated
researchers since the 19t century (Reid 1899) and initiated a series of analytical spatially
dynamic modeling approaches (reaction-diffusion, integro-difference, integral-equations).
These are based on different hypotheses about the redistribution function for the propa-
gules, e.g., Gaussian, negative-exponential, fat-tailed, (Clark 1998; Kot et al. 1996; Powell and
Zimmermann 2004; Skellam 1951; van den Bosch er al. 1990). Another example for the
contribution of spatially dynamic models to ecological theory are modeling studies of the
survival and coexistence of species for understanding the effect of space on biodiversity and
its maintenance (e.g. Chesson 2000; Gurney et al. 1998).

In contrast to the mostly parsimonious models used for general theories, SLST models
tend to be more complex if applied to more specific questions of landscape research. Such
specific questions are addressed in the next paragraphs.

Generating and testing hypotheses: why are landscapes as we observe them?

One motivation for the application of SLST models is to understand observed pattern or
development of a specific landscape to assess the relative importance of various exogenous
and endogenous drivers. This requires analysis of past landscape dynamics, because the land-
scape state as observed in the present is the result of the landscape development in the past.

One topic for modeling such past landscape developments is the effect of disturbance his-
tory on landscape development. Coffin and Lauenroth (1989) used a gap-model to assess the
effect of disturbances on grassland dynamics, and Wimberly (2002) investigated the influ-
ence of wildfire history on spatial forest composition using a combined forest-fire model.
Wagner et al. (2006) used a cellular automaton for continuous tree growth combined with a
lattice model for lichen (sub)population development and spread to explain abundance and
genetic diversity of lichens in forest stands with different disturbance history. Moravie and
Robert (2003) used a position dependent, individual based forest model to assess whether
forest structure can be used to assess past forest dynamics, including disturbances.

The history of natural migrations is another area for the application of SLST models for
the study of past landscape dynamics. Case study 2 illustrates the modeling of plant species
migration during past climatic changes. Also the spread of herbivores and the resulting
effect on plant distributions has been studied by SLST models (Lewis 1994; Maron and
Harrison 1997; Pastor et al. 1999). A range of different models has been developed to study
invasion of exotic plant species (see review in Higgins and Richardson 1996), including
individual-based or lattice models (Higgins et al. 2000), cellular automata (Cannas et al.
2003), or reaction-diffusion models (Frappier et al. 2003).

The influence of heterogeneity on landscape or community patterns is for example studied
with the individual-based, position-dependent forest model SORTIE that acts at small
spatial scales (Pacala e al. 1996). Deutschman ef al. (1999) found that the very fine scale
light variability did not have any significant influence on the community structure. Land-
cover change affected by biotic, abiotic and anthropogenic factors has been studied with
semi-empirical frame-based type models (Brown et al. 2002a; Irwin and Geoghegan 2001).
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Scenarios: what might happen if ... ?

Once hypotheses about the mechanisms behind an observed landscape are generated and
tested, models can be applied in an “if-then”-modus, evaluating either the model outputs’
sensitivity to different parameter or input variables, different forms of process functions or
even different variants of model structure (sensitivity analysis). Alternatively scenario
outcomes can be estimated with models whose control parameters’ or input variables are set
according to a previously defined scenario (scenario studies).

A prominent application of SLST models in “what-if” studies is the unintended spatial
spread of genetic information, either of genetically manipulated organisms or of resistant
pests and weeds. Such complex systems require an integrated view of population dynamics,
genetics, and physical transport processes. Different model approaches have been used to
analyze this complexity, focusing on pollen dispersal (Baker and Preston 2003; Klein et al.
2003; Ma et al. 2004; Meagher et al. 2003; Tufto et al. 1997), population dynamics, and/or seed
dispersal and genetics (Cresswell ez al. 1995; Richter and Seppelt 2004; VanRaamsdonk and
Schouten 1997). Pollen dispersal is taken into account either empirically (Baker and Preston
2003; Ma et al. 2004; Meagher et al. 2003) or by mechanistically describing pollen transport
by wind (Loos et al. 2003; Tufto et al. 1997) or insect vectors (Cresswell et al. 1995). Also the
effect of different types of landscape fragmentation on the persistence and migration of
species has been studied with SLST models, e.g., with a single species spatial logistic model
(Collingham and Huntley 2000), with a lattice model of plant functional types (Cousins et al.
2003), with a spatial gap model (Malanson and Cairns 1997), and with a model for the flight
of individual butterflies in a structured landscape (Kindlmann et al. 2005).

Projections: what might be in the future?

Probably the most tempting application of modeling is to develop scenarios for the outcome
of changes (projections). The basic assumption behind projections is that all functional
relationships that depend on time ¢ whether directly or indirectly, e.g. by definition of rates
and initial conditions, remain true. Furthermore, the intrinsic uncertainty, that might be
acceptable at present, is assumed to be tolerable in the future.

One prominent field of SLST model projections is the ongoing and anticipated climate
change. In this context it is crucial, whether species or ecosystems are resilient, adapt, or
respond with diebacks to the changed environmental conditions, or can follow the climate
change induced latitudinal and altitudinal shifts in the local site conditions (see e.g.,
Kirschbaum and Fischlin 1996). To study vegetation change and migration on the global
scale, first steps are made towards including migration in dynamic global vegetation models
(Neilson et al. 2005). On the continental to regional scale, various vegetation models have
been extended to accommodate seed dispersal processes and have been applied in climate
change studies: e.g., the frame-based model ALFRESCO (Rupp et al. 2000), the landscape
model LANDIS (He et al. 1999), cellular automata (Iverson et al. 2004), lattice models
(Dullinger et al. 2004), and forest and grassland-shrubland patch-models (Lexer et al. 2000;
Peters 2002). Additionally, there is a wealth of models which study the combined effect of
spatial-temporal fire dynamics, vegetation dynamics and succession, which are influenced by
climate change (see classification in Keane et al. 2004).



5 2 Lischke.gxd 28.8.2006 16:13 Uhr Seite 291$

Lischke et al. 2006: Dynamic spatio-temporal landscape models 291

Optimization and decision support for management: what is the best way to achieve
a goal?

An extension of “what-if” studies is the use of SLST models as tools for decision support in
environmental management (Seppelt 2003). The aim is to facilitate decisions about whether
intervention in environmental systems is desirable or likely to be necessary, or which
interventions might yield the best results. This kind of application requires — besides the
assumption that an extrapolation in time is correct — that the models used are robust regard-
ing variation of the driving variables. In the decision-support mode SLST models can by
applied in two ways:

Scenario analysis: SLST models compare the outcome of a given set of scenarios. Each
scenario is a representation of a possible management strategy. As environmental processes
are complex and highly interacting, scenario definition is itself a difficult task, requiring
consensus within the group defining the scenario, e.g. consensus on the input variables of the
model. Scenarios are frequently set up by discussing management options and future devel-
opments with a group of scientists, stakeholders and people involved in the process of
interest (cf. Millennium Ecosystem Assessment 2005).

Optimization: Optimization procedures systematically search over all combinations of
values of the input variables until given management goals are satisfied. Such procedures
support consensus finding by providing transparent evaluations of scenarios. The major
drawback is the high computational complexity that depends on two factors: the complexity
of the process model (number of state variables, degree of nonlinearity etc.) and the spatial
complexity (size of study area, grid cell size, number of spatially interacting processes). The
more complex the simulation model and the larger the number of spatial relationships, the
lower are the chances of success in the optimization. For such complex models, scenario
analysis is usually the only feasible (Fig. 1 in Seppelt and Voinov 2003). Case study 3 gives an
example for this kind of analysis.

Landscape class (% area

B White oak (19.0)
B Bur oak/white oak (9.7)

[l Buroak (9.1)
M Elm/tamarack (8.2)
| White oak/black oak (8.1)
[ Black oak/white oak (7.3)
[ Sugar maple (7.1)
[ Bur oak/black oak (6.9)
White pine (5.9)
Prairie (5.3)
[l Black oak (4.4)
Red pine (2.4)
H Jack pine (2.2)
Aspen (1.9)
[ Jack oak/white oak (1.9)

0 50 100 Kilometers
e

Fig. 1. Southern Wisconsin (U.S.A) represented by a quantitative (fuzzy) landscape classification. ¢p=1.1
indicates the degree of fuzziness with which the landscape was classified (for details see Bolliger 2005)
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Case studies

Case study 1: assessing forest-landscape patterns using a cellular automaton model

This case study applies a generic cellular automaton model to statistically reproduce the
spatio-temporal patterns of an empirical landscape. The model is generic with respect to the
model structure. The model development rules define interaction distances for landscape
patterns without accounting for any ecological detail. The interaction distances are ident-
ified by a circular radius r within which a cell on the landscape is chosen according to various
stochastic rules (details cf. Bolliger 2005). The so chosen cell is then replaced by a randomly
selected cell within a circular neighborhood of radius (1< r < 10), where r represents the
interaction distances. Small interaction distances are defined by r = 1 encompassing 4 cells
on the landscape. Intermediate interaction distances are represented by r = 3, accounting for
27 cells. Large interaction distances are identified by r = 10, encompassing 314 cells (details
cf. Bolliger 2005; Bolliger et al. 2003; Sprott et al. 2002).

Input to the model is a historical landscape of southern Wisconsin (U.S.A). The landscape
is represented by the US General Land Office Surveys, conducted during the 19th century, at
a time prior to Euro-American settlement (Manies et al. 2001; Schulte and Mladenoff 2001;
Schulte er al. 2002). Major landscape patterns (Fig. 1) are assessed using fuzzy classification
(details cf. Bolliger 2005).

Comparisons between model simulations and the empirical landscape include temporal
dynamics and spatial patterns. The temporal dynamics are assessed using cluster probability.
Cluster probability is defined as the proportion of cells that are part of a cluster on the cell
array. A cell is part of a cluster if its value is identical with the four nearest neighbors (e.g.,
bur oak). Cluster probability is thus a measure of aggregation of cells with identical
properties and a measure to identify landscape patterns. The spatial development of land-
scape patterns is assessed using fractals (Bolliger 2005; Bolliger et al. 2003). Fractals provide
measures to quantify spatial characteristics at a variety of scales based on algorithms that
quantify the proportion of the geometrical space occupied by the fractal (Mandelbrot 1983;
Milne 1988;1991; Milne et al. 1992; Sprott et al. 2002).
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Fig. 2. Self-organizing landscapes: the simulated landscape self-organizes to the empirical value for inter-
mediate neighborhoods for r = 3 where r is the interaction distance (neighborhood) and the only param-
eter of the model. Cluster probability is defined as the proportion of cells that are part of a cluster on the
cell array. A cell is part of a cluster if its value is identical with the four nearest neighbors (e.g., bur oak).
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For the temporal development, large neighborhoods (r = 10) result in simulated landscapes
that do not self-organize (Fig.2) as the likelihood that cells with identical properties interact
is decreased. For small neighborhoods (r = 1) over-organization is observed because land-
scape properties are more likely to be similar within small neighborhoods (spatial auto-
correlation). If intermediate neighborhoods (r = 3) are chosen, however, the model simula-
tions self-organize to the respective empirical values. Interaction distances (connectivity)
across the landscape are thus important to generate organized heterogeneity.

For the spatial development, the fractal dimensions D for both simulated and empirical
landscapes are within comparable ranges for intermediate neighborhoods of r = 1 and 3 (Fig.
3). Similarly, for the temporal development of neighborhoods of r = 1 and 3 no particular

Empirical Simulated (r=1, r=3)
" p=15 / D=1.58 /
7 7

@ rd rd
Q
[
ke)

0.0001 0.0001 1

log ()

Fig. 3. Spatial characterization of model simulations: the fractal dimension D (slope of straight part of
function) is similar for both the modeled (r=1 and r=3) and the empirical landscape. Scale invariance
(power laws) are observed for r=1 and r=3. Power laws indicate that no particular space scale is singled
out. ¢: distance. C(¢): probability that two identical entities ar distance ¢ apart.
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Fig. 4. Temporal characterization of model simulations: power laws are observed for simulations with
r=1 and r=3. Temporal scale invariance is observed, i.e. no particular time-scale is characteristic for the
simulations for r=1 and r=3. The neighborhood of r=10 does not exhibit scale invariance since specific
time scales are singled out and no straight line can be observed.
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time-scale is characteristic for the simulations (Fig. 4). Thus, no particular space or time
scales are singled out for small and intermediate neighborhoods, indicating that the patterns
are self-similar and scale invariant with no characteristic scale length. Scale-free behavior
reflects long-range correlations between space and time scales, indicating that processes may
act similarly on landscapes across wide ranges of spatial and temporal scales.

Consistent with the empirical evidence, the simulated landscape shows self-organization
and spatio-temporal scale invariance by relying exclusively on the internal variation of the
patterns themselves since the model accounts for no ecological detail. It is therefore con-
cluded that a generic model calibrated independently from specific ecological processes may
suffice to statistically replicate a complex landscape. Other advantages of generic models
include that simulations can be directly interpreted as a function of its few parameters, thus
do not require detailed assessments of potential interactions with other model parameters.
Limitations of the approach emerge from the fact that the simulated patterns are not
spatially explicit since environmental constraints or gradients are not accounted for.

Case study 2: simulating tree species spread with a migration model

To assess the potential of tree species adaptation to a changing climate, the SLST model
TreeMig has been developed. It is suitable to simulate the succession and migration of tree
species in a structured environment and under changing environmental conditions.

TreeMig (Fig. 5, Lischke et al. in press) is based on the distribution based, height struc-
tured population model DisCForM (see chapter upscaling, Lischke et al. 1998b; Loffler and
Lischke 2001), in which the spatial within-stand variability is taken into account by
theoretical distributions of tree densities and light intensities. To obtain the spatial model
TreeMig, DisCForM has been implemented on a 1km x 1km grid. In each grid cell, trees in
different height classes — tracked as population densities per height class and light avail-
ability class — germinate, grow, and die. TreeMig simulates explicitly seed production, seed
dispersal to other grid cells, seed bank dynamics including density regulation and the devel-
opment of seedlings/saplings.

Local forest dynamics Spatial implementation

lpersal

Birth Density regulation

Fig. 5. Processes of the model TreeMig. The model is implemented on a grid. State variables are the den-
sities of trees in different height classes. Trees germinate from the seed bank, grow, die and produce
seeds. The seeds are dispersed to other grid cells, where they enter the seed bank. Seed bank dynamics
follows a species-specific density regulation.
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TreeMig was used to study the factors and processes driving the spatio-temporal vegetation
development under past changing environmental conditions. The model was applied to the
region of Valais (Switzerland) for the period since the last glacial during the Holocene
(Lischke 2005). Figure 6 shows the spatial species composition at different time points
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Fig. 6. TreeMig simulation of tree species spread on a 1 km x 1 km grid over 100 km x 50 km in the
region of Valais, Switzerland. In each grid cell individual species biomass (t/ha) is drawn as a stacked
column. A cell that is completely filled corresponds to 450 t/ha total biomass, resulting in white stripes in
regions of low biomass. The graph at the bottom indicates the assumed temperature anomaly, the verti-
cal lines refer to the times of the maps shown above.
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during the simulation. The simulation is driven by time series of day degree sum, drought
stress, and minimum winter temperature, based on a temperature anomaly scenario and
current temperature and precipitation values. Years and sites of species immigration were
derived from pollen records. The results show a vivid pattern of species spread, changes of
dominance, and up and down shifts of the timberline. These phenomena are triggered by the
variability of the external factors. Drastic changes of the boundary conditions, such as immi-
gration of species into the simulation area or strong climate changes, initiate endogenous
dynamics, i.e. migration and succession.

Case study 3: using optimization for identification of landscape functions

Spatially explicit ecosystem models allow calculation of water and matter dynamics in a
landscape as functions of spatial location of habitat structures and matter input. Seppelt and
Voinov (2002; 2003) studied in a mainly agricultural region the nitrogen balance as a func-
tion of different land use and land cover schemes. The landscape model uses a grid structure
to calculate water- and matter-dynamics in a spatially explicit way, e.g. flow of matter is
calculated from cells to neighboring cells for surface, subsurface and groundwater according
to the flow network and conductivities, to soil properties and land use. The task of the case
study was to calculate optimum land use and fertilizer application for three different nested
investigation areas, i.e. Partuxent watershed (2365 km?), Hunting Creek (77,8 km?) and a
sub-watershed of Hunting Creek (20,5 km?), all in the Chesapeake Bay region, U.S.A (for
details cf. Figure 12.1 in Seppelt 2003). Here, we focus on optimizing nitrogen loss out of the
watershed; different aspects such as NPP or base flow are discussed in (Seppelt and Voinov
2003).

In a first step optimization tasks were formulated. This required the definition of per-
formance criteria, which compare economic aspects, such as farmer’s income from harvest
“A”, costs for fertilization “B”, with ecological aspects, such as nutrient loss “C”. As “A” and
“B” can be quantified by monetary units and “C” is given for instance by mass per area, a
weight A (shadow price) is introduced in the performance criterion J, which is to be maxi-
mized:

J=A-B-AC (1)

These variables aggregate the processes of the entire study area. If J is defined for each grid
cell (z;) separately, the optimization task can be simplified by

J(zj) = A(zj) - B(zj) = AC(zj), i =1, ncells 2)

The maximum values of the criterion J have been calculated based on numerical opti-
mization in spatially explicit dynamic ecosystem simulation models. Tests have been per-
formed by Monte-Carlo simulations and gradient-free optimization procedures. The core
idea of the investigation is to study optimum habitat patterns as a function of the unknown
weight 4 in Eqn. (1,2). Increasing means that nutrient loss out of the watershed is increasingly
“punished” (compared to economic income by agriculture). Consequently the number of
agricultural habitats decreases when A is increased. The interesting results of these findings
are i) although Eqn (1,2) describes a linear performance criterion, the resulting patterns are
not linear, and ii) these nonlinear pattern are similar for all study areas of differing sizes, see
Figure 7.
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Fig. 7. Comparing optimum land use distribution patterns. In the present example yield is optimized
against nutrient loss for three study areas, namely (a) Patuxent study area, (b) Hunting Creek water-
shed, and (c) the sub-watershed.

In addition to the aggregated results, one is interested in the spatially explicit results. Figure
8 displays optimum land use patterns for different A-values. By doing so sensitive regions
can be identified. For instance, the maps with higher values of A show that forest habitat near
the rivers and creeks supports retention capability of the ecosystem in terms of nutrients. As
a result important areas with high retention capacity can be identified and fertilizer schemes
can be evaluated depending on soil properties and topological relations to neighboring cells.
The example shows that such optimization techniques can be a useful tool for a systematic
analysis of management strategies.
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Fig. 8. Optimum land use maps derived from an SLST model. The models use different A values
(weights), namely A=0 (a), 2=0.1 (b), A=0.13 (c) A=0.5 (d) and A=5 (e) (see text for more details). Lower
areas near rivers and creeks can be identified by contour lines.
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Challenges

The presented applications have illustrated that SLST models are helpful tools for basic and
applied landscape research as well as environmental management. However, there are major
challenges involved in the development and application of SLST models, which include data
availability, choice of appropriate model complexity and scale and model evaluation.

Modeling, simulation and testing model performance requires data and information on
the processes of interest. A major challenge in landscape modeling is data availability. There
is, on the one hand, a fast development in earth observation and monitoring technologies
(esp. remote sensing), which support large-scale spatio-temporal modeling. On the other
hand, a well-known experience in modeling studies is data scarcity: e.g., because modeling
was not planned when a sampling strategy was developed and the data do not suit the
modeling task or because they do not cover the spatial and temporal scale of interest.

Tests of models which are to be used to assess long-term consequences of environmental
change are often hindered due to a lack of appropriate long-term data and there is clearly a
lack of field experiments that run for more than 5-10 years. Alternatively, validation might
be performed with historical archives, but has then to rely on data quality that never reaches
the quality of recently measured data. For example, one important data source for testing
simulations of vegetation change over long time periods are pollen assemblages. Yet, these
are connected with a whole chain of uncertainties (Lischke et al. 1998a), concerning the
interpretation of the pollen data, their temporal resolution and the input data scenarios
required for such comparisons. Taking into account the above mentioned problems of model
testing we recommend that (i) modelers should be integrated in field surveys from the very
beginning and (ii) concerted actions for the collection of environmental data should be
strongly encouraged (Jgrgensen et al. 2000).

Another challenge is to find model approaches, whose complexity (in terms of number of
state variables, parameters and processes) suits best the research question and the available
data (Bolliger et al. 2005). Although this holds for ecological models in general, it is particu-
larly true for SLST models, because the concept of interacting entities involves additional
processes and parameters, and may produce a qualitatively new behavior. The aforemen-
tioned lack of appropriate information is one reason to adapt the model to the available
information, which means to keep it simple (parsimonious). Such parsimonious models have
the advantage that they are easy to manage and robust because they consist of only few
highly aggregated and abstracted model components, i.e. state variables, process functions,
parameters and driving variables. Sometimes they are even simple enough to be analyzed
mathematically, e.g., by stability or bifurcation analysis. If the components of such a parsimoni-
ous model are chosen appropriately, it can be generic, i.e. can give insights into the general
behavior of a landscape (see case study 2). However, generic models are usually not valid for
a specific landscape or cannot represent specific landscape properties such as locations of
landscape elements. Only if the model captures all essential basic processes, resulting in
more complex models, projections or scenario studies of the specific landscape can be
reliable. Complex models furthermore allow more detailed assessments of the spatio-temporal
dynamics of landscapes and their drivers. However, due to the high number of parameters
and potentially non-linear interactions, complex models can lose their robustness.
Additionally, complex spatial models can require excessive computing time. Although this is
only a technical constraint, it encumbers model development and testing and currently
restricts applications either to small regions, coarse resolutions or very general formulation
of the dynamics. Thus, the decision on which model complexity to choose relies on trade-offs
between model generality, performance, accuracy, robustness, and manageability. Model
complexity is partly associated with the scale at which the landscape dynamics is depicted.

——
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Landscape processes operate and generate patterns across a range of hierarchical, spatial,
and temporal scales. The choice of the adequate scale, the integration of model parts acting
on different scales, and the change between scales are considerable challenges in landscape
research in general. Scale changes of SLST models are even more complicated, due to the
spatial interactions.

Modeling involves generalizations and thus introduction of uncertainties on a variety of
levels. It is thus important that the model simulations are thoroughly tested for their robust-
ness and validity (see Oreskes et al. (1994) for discussion on terms like “validation”, “verifi-
cation” etc.) within the range of conditions in which they are to be applied. Furthermore,
landscape models are often optimized for clearly defined study areas and for specific species
that are simulated based on abiotic factors relevant for the study area. If they are to be
applied under different conditions, validity needs to be tested for changing environments or
a variety of situations (model generality). Due to the complexity of many landscape models
it is evident that there is no standard procedure that provides appropriate tests. Rather, a
variety of model aspects, e.g. model structure and behavior, can be evaluated using different
approaches and scenarios. Model testing is often complicated by the lack of appropriate
data. An alternative to comparing the models to empirical data is model comparisons, i.e.
qualitative or quantitative comparisons within or between different model types.

Outlook

Despite all these challenges, SLST landscape models will play an even more important role
in future landscape ecology. Apart from the classical use in system understanding and
scenario-testing, models will be increasingly used to interprete large-scale data (e.g., remote
sensing signals), or for temporal and spatial interpolation of observations, e.g., in landscape
inventories. Additionally, models will help to quantify state and trends of landscapes, and to
identify critical thresholds where abrupt changes may occur. Thus, landscape models are and
will be helpful tools for theoretical and applied research and environmental management, as
they allow hypothesis testing for theory building and scenario testing for applications.
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