
Modelica-based modelling and simulation to support research and development
in building energy and control systems

Michael Wetter*

Lawrence Berkeley National Laboratory, Energy and Environmental Technologies Division, Building Technologies Program,
Berkeley, CA, USA

(Received 1 December 2008; final version received 12 February 2009)

Traditional building simulation programs possess attributes that make them difficult to use for the design and
analysis of building energy and control systems and for the support of model-based research and development of
systems that may not already be implemented in these programs. This article presents characteristic features of such
applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such
applications. Next, the implementation of an open-source component model library for building energy systems is
presented. The library has been developed using the equation-based object-oriented Modelica modelling language.
Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make
this technology accessible to user groups that have more stringent requirements with respect to the numerical
robustness of simulation than a research community may have. Two examples are presented in which models from
the here described library were used. The first example describes the design of a controller for a nonlinear model of a
heating coil using model reduction and frequency domain analysis. The second example describes the tuning of
control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been
done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

Keywords: building simulation; equation-based modelling; rapid prototyping; Modelica; controls

1. Introduction

To design and operate energy efficient buildings, it is
important to properly account for the dynamic system
performance over a wide range of time scales and
operating conditions. At the time scale of hours to
days, the system dynamics determine how much energy
can be stored passively or actively to exploit natural
sources for heating and cooling. At the time scale of
minutes or even seconds, the system dynamics deter-
mine whether equipment is cycling, which can nega-
tively impact its energy performance and may cause
premature equipment failure. Also, the performance of
certain equipment can peak at part load and degrade at
low and high load. To design control algorithms that
exploit such behaviour in order to increase system-level
efficiency, simulation models need to reflect the change
in efficiency at various steady-state and dynamic
operating conditions. Temporally averaging the per-
formance of cycling equipment, as is customary in
hourly building simulation programs, is not always
satisfactory as it does not account for the high cycling
frequency which can degrade the equipment perfor-
mance. An example is a direct evaporating cooling coil
(DX coil) where the condensate may evaporate into the

supply air when the compressor is switched off
(Henderson and Rengarajan 1996).

In industrial research, model-based system engineer-
ing is increasingly used to reduce product development
cycles and to fix errors early in the design. Such a process
often involves experts from different disciplines who
need to integrate models of various domains to analyse
their interaction or to redesign components in away that
increases system-level efficiency or controllability
(Banaszuk et al. 2007). Such processes require models
that can be used beyond time-domain simulation, for
example in conjunction with frequency domain analysis
(to analyse stability and design beneficial dynamic
behaviour) or with optimization algorithms (to optimize
the design or operation).

Using building simulation programs for such
applications leads to new requirements for modelling
and simulation tools. For example, to support the
invention of new systems for space conditioning,
building simulation programs need to allow a scientist
to quickly add new models and use the models within
rapid prototyping processes. For multidisciplinary
research, it needs to be possible to integrate different
models that have been developed concurrently by
different domain experts who are part of a

*Email: mwetter@lbl.gov

Journal of Building Performance Simulation
Vol. 2, No. 2, June 2009, 143–161

ISSN 1940-1493 print/ISSN 1940-1507 online
The submitted manuscript has been authored by a contractor of the US Government under Contract No. DE-AC02-05CH11231. Accordingly, the US Government
retains a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.
DOI: 10.1080/19401490902818259
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



multidisciplinary research team. For controls design
and analysis, building simulation programs need to
represent the dynamic behaviour of components and
their interaction within a system. For generating a
simulation model of an HVAC system and its controls
from a Building Information Model, building simula-
tion programs should be able to represent any HVAC
and controls configuration that can be built in reality.
This would allow using any valid Building Information
Model that contains not only building envelope data
but that may in the future also contain data for HVAC
components, their system configuration and the
specification of control algorithms.

We recognize that vendors may not release the
performance data and control algorithms at a level of
detail needed for a proper simulation of the dynamic
system performance. In such situations, one can still
use the pragmatic approach of implementing simplified
equipment performance curves and control algorithms
with equation-based modelling languages, using the
scarce information available, as is frequently done in
today’s building simulation programs.

2. Traditional building simulation programs

To better distinguish the modelling and simulation
technique described in this article from the way that
building simulation programs are typically written, we
introduce the term traditional building simulation
programs. By traditional building simulation pro-
grams, we mean building simulation programs that
are written using an imperative language, such as
FORTRAN, C and Cþþ. Examples of traditional
building simulation programs include DOE-2, ESP-r
and EnergyPlus (Winkelmann et al. 1993, Clarke 2001,
Crawley et al. 2001). In such programs, a developer
writes sequences of computer instructions that assign
values to variables in a predefined order of execution.
Typically, such programs mix code that describes the
physical process with code for data management and
for numerical solution methods.

Traditional building simulation programs have in
general not been designed based on the above
requirements. Meeting these requirements requires
modelling techniques that are different from the
techniques used in these programs, in which the
semantic gap between simulation model and actual
component can be large and which often mix code for
expressing the physical behaviour with code for data
management and numerical solution methods. A
reason for this semantic gap is that models in
traditional building simulation programs are written
in a way that was motivated by how computers process
instructions. For example, when implementing a
physical model, a program developer sorts and

manipulates the physical equations based on what
variables are known (the input) and what variables
need to be computed (the output). Then, the program
developer writes causal, sorted variable assignments
and implements them in a source code. This source
code may call other program procedures, thereby
transferring the locus of control until the response of a
subsystem to its input variables is computed. During
this process, program procedures may set flags to
request from the solver the re-simulation of a
subsystem. Clearly, this is not how one would state
the physical laws that govern constraints between
component interface variables and how one would
describe how components interact with each other.
Rather, it was the only approach for writing building
simulation programs at a time when more modern
tools for modelling, symbolic algebra, numerical
solution and code generation were in their infancy.

3. Limitations of traditional building simulation
programs

In traditional building simulation programs, component
models frequently integrate their own numerical solver
and mix program flow logic with equations that simulate
the physical behaviour. This leads to a program code that
is hard tomaintain and for which it is difficult to add new
models. The nested solvers can also lead to significant
numerical noise in the simulation results that can make
the use of optimization programs difficult (Wetter and
Wright 2004,Wetter and Polak 2004b). Furthermore, the
lack of separation between models, data and solvers
makes it hard to integrate models from different
disciplines for co-simulation such as in Trcka et al.
(2006, 2007) and Wetter and Haves (2008). Because the
majority of building simulation programs do not model
the dynamics of HVAC systems and sometimes imple-
ment an idealized controller directly in a component
model,many standard control sequences such as the ones
described by ASHRAE (2005) and CIBSE (2000) are
difficult if not impossible to model. For example, in
EnergyPlus, fan coil units are controlled based on the
zone heating and cooling load and not based on a zone
thermostat. This makes it hard to use such models in
conjunction with models of control systems.

As part load performance and system controls
become of increasing importance in very low energy
buildings, energy simulations need to properly resolve
the nonlinear dynamic behaviour of building energy
and their control systems, and capture the dominant
dynamics that may lead to equipment short-cycling.
When developing models for such systems, one obtains
systems of differential equations where the time
constants can vary significantly among different
components. These systems of differential equations

144 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



may be coupled to algebraic equations and to
difference equations. For the efficient numerical solu-
tion of such systems, algorithms for symbolic compu-
ter algebra (such as partitioning and tearing) and
implicit numerical solvers for differential equations
should be used (Cellier and Kofman 2006).

With respect to composing HVAC systems from
component models, we note that in some traditional
building simulation programs, the arrangement of
HVAC and control components is governed by
composition rules (that define how components can
be assembled to form a system) which are not devised
based on how actual HVAC components can be
connected to form a system. Rather, the composition
rules were defined such that an efficient numerical
solution could be obtained in a program architecture
that distributes solvers to individual components and
subsystems and that does not make use of symbolic
manipulations. This led to program architectures with
sequential simulation of loads, systems and plants, or
to program architectures that are based on fluid loops.
The consequence is that translating an HVAC system
from a Building Information Model to an energy
simulation program is only possible if the HVAC
system instantiation in the BIM has been done such
that the component connectivity conforms to the
composition rules of the energy simulation program.
This is, for example, followed in the approach
described by Bazjanac and Maile (2004). Although
this approach may present a working solution for
traditional HVAC systems and controls, it presents a
challenge for the use of BIM for non-standard HVAC
systems and to represent novel control algorithms.

4. Building system library

Because of these limitations, we started an open-source
development of a new component library for building
energy systems using the equation-based object-
oriented modelling language Modelica (Mattsson and
Elmqvist 1997). For early applications, we are primar-
ily interested in:

. offering innovative companies and researchers a
platform to stimulate innovations in energy-
efficient building systems;

. enabling virtual rapid prototyping to evaluate
different concepts rapidly so that promising
alternatives can be identified for further refine-
ment and product development;

. enabling researchers to quickly add models of
emerging technologies into the simulation envir-
onment to do performance assessment; and

. enabling controls engineers to extract different
subsystem models from models that are used for

the design of the building energy system. These
models may then be used within a feedback
controls design process, or they may be em-
bedded within building control systems for
model-based controls, fault detection and
diagnostics.

In the long term, we envision the models being used
in a work flow that automatically generates a
simulation model from a BIM that includes a
modular definition of HVAC systems and control
algorithms.

Modelica has been applied earlier for building
energy modelling applications but an extensive library
with both steady-state and dynamic component models
for building energy systems is not yet available. Other
Modelica development has been reported by Merz
(2002) and Felgner et al. (2002) who describe the
library ATPlus for thermal building simulation. Hoh
et al. (2005) expanded the components of the ATPlus
library to include a room model with heat exchangers
that are embedded in wall constructions. Nytsch-
Geusen et al. (2005) developed a hygrothermal
building model as part of a Modelica library for
multizone building heat and mass transfer analysis. A
multi-zone thermal building model is described in
Wetter (2006b) and a multizone airflow model is
described in Wetter (2006a).

4.1. Characteristics of the target applications

To further illustrate why we are interested in a new
approach for modelling and simulation of building
systems, and to rationalize our selected implementa-
tion, we will now discuss some characteristics of the
above applications:

4.1.1. Efficient numerical solution

To discuss the computation time, consider the
equation

seconds

program
¼ instructions

program

! "
clocks

instruction

! "
seconds

clocks

! "

ð1Þ

that describes the time needed to execute a program as
the product of the number of instructions of the
program, times the average clock cycles needed to
process an instruction, times the seconds that elapse
per clock cycle. As application developers, we can
influence the first two terms on the right-hand side,
whereas the third is given by the processor clock.

The instructions to be executed by the program
can be reduced by selecting efficient symbolic and

Journal of Building Performance Simulation 145

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



numerical algorithms and a good software structure.
With regard to numerical algorithms, we note that in
building energy systems, time constants vary between
seconds for feedback control to days for energy storage.
To ensure stability, to control the error of the numerical
solution and for computational efficiency, solving such
systems requires implicit integration algorithms with
adaptive step sizes (Hairer and Wanner 1996, Cellier
and Kofman 2006). This, in turn, can lead to large
linear and nonlinear systems of equations that need to
be solved simultaneously. Since the computation time of
linear and nonlinear solvers is typically proportional to
n2 to n3, where n denotes the number of unknowns that
are solved for simultaneously, it is generally advanta-
geous to reduce n. For equation-based languages, this
can be done by symbolically manipulating the system of
equations using methods such as partitioning, tearing
and inline integration (Elmqvist et al. 1995, Bunus and
Fritzson 2004, Cellier and Kofman 2006), which are
similar to the methods used in SPARK (Sowell et al.
1986, Sowell and Haves 2001, Wetter et al. 2008).
However, traditional building simulation programs use
imperative programming, such as procedural code, that
defines the sequences of computer instructions as
opposed to only the logic of the computation as a
declarative language would do.1 This imperative model
formulation does not allow the use of the above
symbolic manipulations.

The number of cycles it takes to process an
instruction can be reduced by using algorithms that
take advantage of parallel hardware. Exploiting
parallelism in hardware becomes increasingly impor-
tant because the third term on the right-hand side is
not expected to decrease significantly in the future
(Asanovic et al. 2006). Increasing parallelism is there-
fore the primary method of reducing the computing
time. Taking advantage of this technological develop-
ment requires changes in the software architecture in
order to implement libraries that exploit parallelism,
such as the ones described by Vuduc et al. (2005). It
also requires adding parallelization constructs to
higher level code. The fact that the seconds/clock are
not decreasing much but instead the hardware is
becoming increasingly parallel has far reaching con-
sequences for the software community (see, for
example, Asanovic et al. (2006)). Taking advantage
of these technological changes is easiest if programs are
designed such that they separate concerns for model
formulation, symbolic processing, data management
and numerical solution. This allows using highly
efficient libraries for computational kernels (i.e. com-
putational tasks that are common to many applica-
tions such as solvers for linear systems of equations)
that can be updated with few changes to the applica-
tion program as the hardware changes and the state of

the art in the scientific computing community ad-
vances. It is questionable that traditional building
simulation programs, which contain hundreds of
thousands of lines of code and whose software
architecture has not been designed for parallel
computation, can take effective advantage of this
development.

4.1.2. Management of complexity

The flat model representation that can typically be
found in today’s building simulation programs is not
well suited to manage the complexity of large system
models. Instead, a modelling language should allow for
the management of the complexity of building system
models by providing means for composing system
models hierarchically (to encapsulate subsystem mod-
els), for object-inheritance (to reuse existing basic
models and refine their implementation), for object-
instantiation (to use and parameterize an object in a
simulation model) and for polymorphism (to change
the model semantics based on the environment that the
model is exposed to). There should also be a capability
that allows a model builder to assemble system models
as one would connect components in an actual system,
with acausal connections that link model ports that
carry physical quantities such as mass flow rate, species
concentration, pressure and temperature. These
requirements are part of the object-oriented modelling
paradigm that is described by Cellier (1996) and
realized in the Modelica language.

4.1.3. Simulation of dynamic effects

Time domain simulation of equipment that switches on
and off by averaging its performance over a fixed time
step can lead to incorrect prediction of the equipment
performance. For example, a DX coil that short-cycles
at high frequency has a lower latent heat capacity
compared to the same coil that cycles at lower
frequency because the water film that deposits on the
coil can evaporate into the supply air stream when the
compressor is switched off (Henderson and Rengar-
ajan 1996). Furthermore, models that time-average the
dynamic performance are not applicable for analysing
the robustness and dynamic performance of feedback
control loops. Time-averaging the dynamics also limits
the use of models in operation for model-based
controls, fault detection and diagnostics.

4.1.4. Use of models beyond time domain
simulation

Models can serve more applications than just time
domain simulation. For example, control theory for

146 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



linear time invariant systems provides a rich frame-
work for systems of the form

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð2aÞ

yðtÞ ¼ CxðtÞ þDuðtÞ; ð2bÞ

where A, B, C and D are matrices with constant
coefficients, x(%) is the state vector, u(%) is the control
input vector and y(%) is the output vector. In Section
4.6.1 we show how such theory can be used in
conjunction with a nonlinear Modelica model for a
heat exchanger to design a controller.

4.1.5. Use of models in conjunction with optimization
algorithms

To prove convergence of optimization algorithms to a
stationary point, the cost function needs to be once
continuously differentiable. There is a large class of
optimization algorithms, some of which do not require
knowledge of the gradient, that can be used to
efficiently solve such problems (Polak 1997, Kolda
et al. 2003, Polak and Wetter 2006). It is generally
accepted in the optimization community that at least
for the final iterates, the simulations need to be done
with high enough accuracy of the numerical solvers to
make the numerical noise in the cost function
negligible. This has been shown to be difficult with
building simulation programs that have several solvers
spread throughout their code, often without giving the
user the means to use tight solver tolerance (Wetter
and Polak 2004b, Wetter and Wright 2004) or to
adaptively adjust them during the simulation to reduce
the computation time such as in Wetter and Polak
(2004a).

4.1.6. Generation of a simulation model from a BIM

We envision using a Building Information Model to
generate a model that can be used for energy simulation
from a component-based BIM representation of the
building, its HVAC system and its control system. To
accomplish this, it seems to be most natural to
encapsulate models for simulation in the same way as
components are delivered to a building. Furthermore,
the rules that describe how component models can be
connected to each other to form a system model should
be as close as possible to the rules that describe how
actual components can be connected to each other.

In view of these characteristics, we suggest revisit-
ing the current approach of writing building simulation
programs. Instead of writing programs that describe
how a building energy system should be simulated, i.e.

in what sequence equations are evaluated, how
variables are propagated from one routine to another
and how equations are being solved, one should write
models that define the algebraic and dynamic relation-
ships between their interface variables, and compose
system models hierarchically. How to generate a
computer code for simulation from these systems of
equations should be left to software that manipulates
the equations symbolically and links them to numerical
solvers. Clearly, this poses formidable challenges to
symbolic and numerical solvers. It is the subject of the
research described here to explore a model formulation
that allows robust and efficient numerical simulations,
and to identify research and development needs to
make equation-based modelling accessible to a larger
community than simulation specialists.

4.2. Implementation

To implement our modelling library we selected the
Modelica language. Modelica is a free open-source
language for object-oriented equation-based modelling
of systems that are described by differential, difference
and algebraic equations. Its broad support in many
industrial domains positions it well to become the de-
facto standard for modelling of dynamic systems.
Thus, we believe it has the potential to become a
language that allows exchanging models among users
of different engineering domains, including building
technologies, that may use different modelling and
simulation environments, similar to what was
attempted by Sahlin and Sowell (1989) with the
Neutral Model Format language.2 We note that
equation-based modelling and simulation was intro-
duced to the building simulation community close to
two decades ago (Sowell et al. 1986, Sahlin and Sowell
1989, Charlesworth et al. 1991, Klein and Alvarado
1992). What is different from earlier efforts is that
Modelica is supported by various industrial sectors
which broadens the resources available to develop the
language and the modelling and simulation environ-
ments. In addition, there have been various advances
in symbolic and numerical methods as well as in
computer science and computer hardware that make
the approach more feasible today.

Before discussing the architecture of our library, we
present a brief overview of Modelica and refer for an
in-depth discussion to Mattsson and Elmqvist (1997),
Tiller (2001) and Fritzson (2004). In 1996, a con-
sortium was formed to develop the Modelica language.
The goal of the consortium is to combine the benefits
of existing modelling languages and to define a new
uniform language for model representation by creating
a modelling language that allows modelling systems
that involve multiple engineering domains such as

Journal of Building Performance Simulation 147

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



electrical engineering, thermodynamics, heat transfer,
fluid dynamics and controls (Fritzson and Engelson
1998). Modelica is an equation-based, acausal, object-
oriented modelling language that is designed for
component-oriented modelling of dynamic systems.
Models are described by differential equations, alge-
braic equations and discrete equations. Using standar-
dized interfaces, the mathematical relations of a model
between its interface variables are encapsulated, and
the model can be represented graphically by an icon.
This encapsulation together with the standardized
interface variables facilitate model reuse, model
exchange and connecting component models to
system models using a graphical or textual editor.
Since Modelica is a standardized language, it is a
promising choice for ensuring that models can
indeed be shared and exchanged by a large user
community.

A tenet of Modelica is that each component should
represent a physical device with physical interface
ports. For ports of opaque heat conductors, interface
variables are heat flow and temperature, and for an
element that transports a fluid, the port variables are
pressure, species flow and enthalpy. This encapsulation
together with acausal models enables a graphical,
input–output free model construction. In a schematic
model diagram of a physical system, icons correspond
to actual components or subsystems and encapsulate
the equations that define the physics of the subsystem.
Lines between the icons impose interface equations to
conserve flow and to equate state variables, or they
may propagate signals in a control system.

Models can be encapsulated hierarchically. This
facilitates managing the complexity of large systems,
reusing subsystem models and testing of subsystem
models before they are assembled into a large system
model that may be difficult to debug. To reduce
the model development time, the object-oriented model
construction in Modelica allows experts of different
domains, such as an HVAC engineer and a controls
engineer, to model their respective process, and later
interface the models to analyse the complete system.
This effectively allows concurrent, as opposed to
sequential, model building.

Modelica libraries for multi-domain physics
(http://www.modelica.org/libraries/) include models
for control systems, for thermal systems, for electrical
systems and for mechanical systems, as well as for fluid
systems and different media (Elmqvist et al. 2003,
Casella et al. 2006). Because the libraries use
standardized interfaces, models from different libraries
can be used within the same system model. An example
of such a standardized interface is the HeatPort
connector of the Modelica Standard Library which
defines a connector with temperature and heat flow.

It is implemented by the following lines of Modelica
code:

1 partial connector
2 Modelica.Thermal.HeatTransfer.
3 Interfaces.HeatPort
4 ’’Thermal port for 1-D heat
5 transfer’’;
6 SI.Temperature T
7 ’’Port temperature’’;
8 flow SI.HeatFlowRate Q_flow
9 ’’Heat flow rate (positive if

10 flowing into the component)’’;
11 end HeatPort;

On line 8, the type prefix flow declares that all variables
connected to Q_flow need to sum to zero. For example,
if two HeatPorts are connected, the relationship
T1 ¼ T2 and the conservation equation
_Qflow;1 þ _Qflow;2 ¼ 0 are generated. This connector
can then be instantiated to define the interface in a
one-dimensional heat transfer element with no energy
storage. In Modelica’s thermal library, such a heat
transfer element is implemented as

1 partial model Element1D
2 ’’Partial heat transfer element
3 with two HeatPort connectors
4 that does not store energy’’
5 SI.HeatFlowRate Q_flow ‘‘Heat flow
6 rate from port_a ! port_b’’;
7 SI.Temperature dT ‘‘port_a.T-
8 port_b.T’’;
9 public

10 HeatPort port_a;
11 HeatPort port_b;
12 equation
13 dT ¼ port_a.T – port_b.T;
14 port_a.Q_flow ¼ Q_flow;
15 port_b.Q_flow ¼ 7Q_flow;
16 end Element1D;

Lines 5 to 8 contain the declaration of the variables _Q
and DT that are typically computed in a one-
dimensional heat transfer element. Lines 10 and 11
instantiate the HeatPort connector to expose to the
outside of this model the port temperatures port_a.T
and port_b.T, as well as the port heat flow rates
port_a.Q_flow and port_b.Q_flow. The equations
on lines 13 to 15 define the relationships between the
variables of the two HeatPort connectors and the
variables of the partial model Element1D. Note that
Element1D does not declare a relation between the
heat flow rate and the temperatures, as this relation is
different for conduction, convection or radiation.

148 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9

http://www.modelica.org/libraries/


Because this relation is not specified, the model is
declared partial to indicate that it can be extended
by other models to refine its implementation, but that
it cannot be instantiated as it does not define its
semantic. To implement a thermal conductor, the
above partial model can be extended as follows:

1 model ThermalConductor
2 ‘‘Lumped thermal element
3 transporting heat without storing it’’
4 extends Interfaces.Element1D;
5 parameter SI.ThermalConductance G
6 ‘‘Constant thermal conductance’’;
7 equation
8 Q_flow ¼ G*dT;
9 end ThermalConductor;

This thermal conductor model can then be encapsulated
in a graphical icon using drawing elements that are part
of the language standard, and hence, can be interpreted
by different Modelica modelling environments. By using
a different parameter declaration on line 5 and a
different equation on line 8, the semantics can be
changed to represent other one-dimensional heat
transfer elements such as a model for long-wave
radiation between two surfaces. Note that the above
code is not pseudo-code, but rather a complete
implementation of a heat conductor in the Modelica
language. (For simplicity, optional graphical annota-
tions that can be interpreted by a graphical model editor
and optional model documentation in html format have
been omitted.) Here, a model developer only declared
the variables and the constraints between heat flow rate
and temperatures. Whether the model will solve for the
heat flow rate or for a port temperature will be
determined by a code generator that analyses the overall
simulation model in order to determine a numerically
efficient sequence of computations.

Modelica is a language that defines models but it
cannot be executed directly. To create executable code,
a Modelica simulation environment translates a
Modelica model to a programming language such as
C and links it to numerical solvers. See, for example,
Cellier and Kofman (2006) for a description of
algorithms that are typically used in such a process.

The Software Component Model that is embodied
in the Modelica language enables a flexible reuse of
models. The Software Component Model consists of
components, a connection mechanism and a component
framework (Fritzson 2004). Components are connected
using Modelica’s connection mechanism. This can be
visualized in connection diagrams. The component
framework realizes components and connections and
ensures that communication works over the

connections. Connectors can contain physical variables
such as temperature and heat flow rate, which are
typically implemented using acausal variables. They can
also contain signals such as a control input which are
typically implemented using causal variables, or they
can be composite and involve causal and acausal
variables. There are several connectors defined in the
Modelica Standard Library, and the design is such that
all independent variables that are necessary to define the
desired effects in a real interface are part of a connector.

The Software Component Model that is embodied
in Modelica allows connecting models as one would
connect real components with each other. Therefore, if
models are encapsulated the same way as components
are encapsulated in a Building Information Model, a
one-to-one translation between a BIM and an energy
simulation model can be done. With many of today’s
building simulation programs, this is not possible
because building simulation programs impose rules for
how component models can be connected to form a
system model, and these rules are typically more
restrictive than how actual components can be
connected to form an HVAC system. An example of
such a situation is shown in Figure 1. The figure
illustrates a cooling and ventilation system in which
components are connected in a way that cannot be
directly represented in the EnergyPlus whole building
simulation program. The left-hand side of the figure
shows the schematic view of the actual system in which
the room return air flows through an economizer and
then into a double-skin façade from which it is
exhausted to the outside by the exhaust air fan. The
right-hand side of the figure shows the schematic view
of the model with the modifications that were needed
to simulate it in EnergyPlus. In particular, an
additional economizer had to be added, and the
exhaust air fan had to be placed in the supply air
stream. This was needed as EnergyPlus does not allow

Figure 1. Schematic view of an HVAC system with exhaust
air through a double-skin façade (left-hand side) and
implementation in the EnergyPlus whole building simulation
program (right-hand side).

Journal of Building Performance Simulation 149

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



connecting two thermal zones, one for the room and
one for the double-skin façade, with a flow path that
contains the economizer. Although an expert modeller
may be able to make such modelling decisions, it
would be impractical to write a BIM translator that
allows such special HVAC system configurations.
However, in modular modelling languages such as
Modelica, a direct implementation of the actual system
is possible as components can be connected in any way
as long as the port variables are compatible.

4.3. Base class for library

In Modelica, there are currently two implementations
for fluid flow models: the package Modelica.
Thermal.FluidHeatFlow of the Modelica Standard
Library and the package Modelica_Fluid (Casella
et al. 2006). The latter is intended to become part of the
Modelica Standard Library.

The package Modelica.Thermal.FluidHeat-
Flow has been developed under the assumption that
the mixture concentration remains constant, that the
medium does not change phase and that the medium
properties are constant. For many building HVAC
applications, these assumptions are too restrictive
since, for example, change in air humidity or pollutant
concentration is often of interest. The package
Modelica_Fluid is not based on these assumptions.
Instead, models in the package Modelica_Fluid
instantiate a medium model that provides standardized
variables and interfaces to medium property functions
such as for density or viscosity. Medium models can
range in their fidelity from single-phase, single-
substance, constant property media to detailed multi-
phase, multi-substance media such as air with water in
liquid and vapour phase, depending on the water
vapour and saturation pressure. Since component
models are implemented separately from the medium
models, the same component models can be used for
different media. Because of this flexibility, our library
is based on the package Modelica_Fluid. A goal of
Modelica_Fluid is that every component can be
connected in an arbitrary way, and components such
as pipes can be reversed without affecting the
performance of the simulation model.

Modelica_Fluid is still under development, but
it already provides a set of component models for one-
dimensional thermo-fluid flow in pipe networks.
However, the models are not meant to cover all
application areas but rather serve as examples for how
to implement additional components. In our library,
we used some of the same base classes, reused certain
models and added additional models that are more
specifically targeted towards building HVAC system
modelling and simulation. For example, while

Modelica_Fluid provides spatially discretized heat
exchanger models with detailed models for fluid flow
friction and convective heat transfer coefficients, we
implemented additional heat exchanger models that
are more applicable for modelling and simulation of
building HVAC systems during early design when little
detailed component data are available.

4.4. Buildings library packages

We organized our Buildings library into the
packages listed below. Additional packages including
models that link during the simulation to the Building
Controls Virtual Test Bed (Wetter and Haves 2008), and
hence to EnergyPlus, will be added later. The library is
available from http://simulationresearch.lbl.gov.

BaseClassesThis package contains base classes
that are used by several models of this library such
as a basic icon that may be extended by a model to
provide a uniformgraphicalmodel representation.
Note that other packages may have their own sub-
package BaseClasses that may provide basic
models that are used within the corresponding
package only. For example, the package Fluids
has a package Fluids. BaseClasses that
provides a model for a flow resistance that is
usedby afixedflow resistancemodel andby a valve
model.
Controls This package contains models of
continuous time and discrete time controllers.
Fluids This package contains models for fluid
flow components such as fixed flow resistances,
two- and three-way valves with various opening
characteristics, air dampers and fans. There are
also models for thermal energy storage tanks,
furnaces and measurement sensors.
Fluids.HeatExchangers Models in this
package include various heat exchanger models
including steady-state heat exchangers with fixed
effectiveness, dynamic heat exchangers that are
discretized along the two flow paths and a simple
heater or cooler whose heat transfer rate is
proportional to a control input. There are also
models for cooling towers.
Fluids. MassExchangers This package con-
tains a model for a humidifier and a heat and
moisture exchanger.
HeatTransfer This package contains models
for heat transfer elements such as a finite volume
method for heat conduction in solids.
Media This package contains media models that
can be used in addition to the models provided by
Modelica.Media. Our models are in general less
detailed to reduce simulation time. For example,

150 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9

http://simulationresearch.lbl.gov


the package contains a model for moist air with
constant specific heat capacity of air and water
vapour, and models for dry and moist air with a
simplified implementation of the gas law. There is
also a model for water with constant density.
Utilities This package provides utility classes
that are used by models in several packages. For
example, there are psychrometric models. There
are also models that facilitate writing results to
output files to augment the output capabilities
provided by the simulation environment and by
the Modelica Standard Library. In addition, this
package contains functions that approximate
some non-differentiable functions by approxima-
tions that are differentiable everywhere and
whose derivatives are continuous. Such functions
may be used by a model developer to increase
numerical efficiency.

4.5. Technical difficulties

The formulation of dynamical systems using equation-
based languages typically leads to large sparse systems
of hybrid differential algebraic equations.3 A direct
solution of these systems is not practical. Instead, the
following steps are typically involved to create a
computationally efficient simulation program:

(1) The user constructs the model equations using
a graphical editor, a textual editor, or a model
generator.

(2) State variables are selected and the equations
are symbolically manipulated to reduce high
index differential algebraic equation systems.

(3) Block lower triangulation and tearing are used
to reduce the dimensionality of the linear and
nonlinear system of equations.

(4) Program code is generated, compiled and linked
to libraries that contain numerical solvers.

(5) The hybrid differential algebraic equation
systems are solved to find consistent initial
conditions.

(6) The equations are integrated over time.

Steps (2) to (6) can be done automatically without user
intervention for simple systems, but they may require
user intervention for more complex building energy
system models. In step (1), a model builder makes the
decision of what physical phenomena are to be
included in the model. Here, the level of modelling
detail is selected based on the process that should be
investigated and the availability, or uncertainty, of the
process input data. To guide an algorithm in step (2), a
model builder can give hints to a symbolic processor to
select state variables and/or to tear equation systems.

For example, for a thermodynamic state, either
temperature or enthalpy may be used as a state
variable, but selecting temperature may lead to non-
linear equations that need to be solved numerically,
while enthalpy may be expressed as an explicit function
of temperature. Such hints may be embedded in a
model library. On the basis of our experience, for
building energy and control systems, step (5) can be
challenging. Here, a user can give guess values to aid
the numerical solver in finding consistent initial
conditions. Finding proper settings can in some cases
require trial and error even for experienced users.

The need for providing good initial guesses
currently presents a risk for making equation-based,
component-oriented modelling available to a large user
base that is not trained in these skills. It also presents a
risk to use this technology in conjunction with code
generators that may, for example, process a BIM to
generate a simulation model for performance assess-
ment, or to use such programs during the operation of
the building when they need to run unattended.
Possible risk mitigation includes advances in symbolic
and numerical methods, embedding good guess values
in model libraries, and further research in how
models should be formulated to ensure fast and
robust numerical simulation. With respect to robust
numerical simulation, the current redesign of the
Modelica_Fluid library shows promising initial
results. Since version 1.0 of Modelica_Fluid, the
library has a new implementation for handling flow
reversal in flow networks. The new implementation leads
in flow networks to residual equations that are contin-
uous and often differentiable. In the past, these equations
were often discontinuous in the iteration variables which
frequently caused numerical problems. While further
experiments on large and realistic benchmarks are still
pending, the initial experiments show significant improve-
ments over the previous implementation in terms of their
analytical properties (smoothness of the nonlinear system
of equations), and in terms of their numerical perfor-
mance in computing consistent initial conditions and
integrating the equations in time.

We note that solvers in traditional building
simulation programs often fail to converge too. A
common practice in such cases is to freeze the iteration
variable, accept the non-convergent solution and
proceed to the next time step. However, as pointed
out above, this can cause large numerical noise that
can lead to incorrect results when analysis techniques
are used that require smoothness of the simulation
result with respect to input data, such as a sensitivity
analysis for identifying important parameters or non-
linear programming for optimization.

Advances are also needed to translate run-time
exceptions into a language that can be understood by

Journal of Building Performance Simulation 151

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



the model user who may not have a background in
numerical methods. Furthermore, diagnostics meth-
ods, or expert systems, may be developed that guide a
user in finding a better model configuration.

In summary, there are quite a few interesting open
research problems in the field of equation-based model-
ling for building systems. We believe that the benefits of
further progress in this area would be substantial as
equation-based modelling enables many new applica-
tions, it facilitates integration of models from different
engineering domains, it allows broadening the develop-
ment effort for modelling and simulation environments
across different disciplines, and it allows modelling at a
higher level of abstraction that is closer to how a human
typically describes an engineering problem.

4.6. Applications

We will now present examples in which we determined
control parameters using frequency domain analysis
and optimization. The models were constructed using
component models of the above described Modelica
Buildings library, version 4.0.0, with Modelica_-
Fluid 1.0 Beta 2 and the Modelica Standard
Library 2.2.1. To build, simulate and linearize the
system models, we used the Linux version of the
Modelica modeling and simulation environment Dy-
mola 6.0b (Brück et al. 2002). For the frequency
domain analysis, we used MATLAB1 2008a with the
Control System ToolboxTM (Mathworks 2008). The
optimization was done using GenOpt1 2.1.0 (Wetter
2004).

4.6.1. Controls design using root locus

The root locus technique is a commonly used controls
design method for linear time invariant (LTI) systems.
The root locus shows the location of the poles and zeros
of the characteristic equation 1 þ k G(s) ¼ 0 for a
varying control gain k 2 [0,?), where G(s) is the open
loop transfer function. We will now show the use of this
technique to design a controller for a heating coil.

Figure 2 shows the Modelica model of the open-
loop system. The circles are boundary conditions with
constant pressure and temperature. Their parameters
are such that the water flow direction is from the model
sou_1 to sin_1 and the air flow direction is from
sou_2 to sin_2. The control input u is equal to the
lift of a valve whose relationship between valve lift and
volume flow rate is linear (at a constant pressure
difference). The control objective was to track a set
point for the heat exchanger air outlet temperature.
The dynamic response of the outlet temperature sensor
was modelled using a linear first order differential
equation. The heat exchanger was a finite volume

model with heat capacities for the water in the tubes,
for the tube metal wall and for the air. Each pipe was
discretized along its water flow path, and the air was
discretized along its flow path with an element for each
intersection of the air flow path with a pipe. The
convective heat transfer coefficient on the water side was
a function of the water mass flow rate, whereas the air-
side convective heat transfer coefficient was held
constant as we did not vary the air flow rate in this
example. The valve was sized such that its authority was
0.5. For the closed loop model, we used a proportional
controller. The closed loop model defined a differential
algebraic equation system with 2593 variables. It was
composed of 405 component models (that were
primarily used to define the heat exchanger model).
There were a total of 36 state variables for the coil
model and one state variable for the dynamics of the
temperature sensor at the coil air outlet. The biggest
coupled nonlinear system of equations was an 8 6 8
system, which was reduced to a set of scalar equations
by the symbolic processor which also found analytic
expressions for all elements of the Jacobian matrices.

The closed loop system exhibited oscillatory
behaviour for large values of the proportional gain
Kp and large steady-state errors for small values. Thus,
our objective was to find the value of Kp that gives
small steady-state error and non-oscillatory behaviour.

As the plant was nonlinear, we followed the
following design procedure:

(1) Bring the open loop system to different steady-
state conditions, and linearize the open loop
response around these steady-state conditions.
This yields, for each linearization, an LTI
model of the form _x ¼ AxþBu, y ¼ CxþDu,
with 37 state variables.

(2) For each LTI model, compute a reduced order
model, _~x ¼ ~A ~xþ ~Bu; y ¼ ~C ~xþ ~Du that has
similar response to the original LTI model but

Figure 2. Open loop model for the heating coil.

152 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



is better suited for controls design than the high
order model.

(3) For each reduced order model, design a
controller (that is applicable locally because
the model is linearized) and then design a
control law that is applicable for the whole
range of operating conditions.

(4) Test the controller on the original nonlinear
model. If the control performance is unsatis-
factory, repeat the previous step.

For step (1), we used the Dymola program to bring the
plant to steady-state conditions for a small and large
valve opening. In particular, we set u ¼ 0.05 and
u ¼ 0.95, respectively, simulated the open loop plant
until it reached steady state, and then called the
linearization command of Dymola that extracts an
LTI model around the current operating point. Thus,
rather than implementing a linearized model that
would be valid only locally, we implemented a
nonlinear model, let it reach two different operating
points that were of interest, and then called a
linearization command of the simulation environment.
The linearization command conducted an input
perturbation and reinitialization of state variables as

needed during the perturbation to compute a linear
approximation to the original model.

For step (2), we imported the LTI model into
MATLAB and computed the Hankel singular
valuesfsig37i¼1. The first few Hankel singular values
were si ¼ {29.29, 2.2997, 0.3334, 0.2778, . . .} for
u ¼ 0.05 and si ¼ {14.48, 1.687, 0.5090, 0.0217, . . .}
for u ¼ 0.95. As the fourth values contributed little to
the response, we computed 3rd order reduced order
models for both values of u. Figure 3 compares the
Bode plots and step responses for the full order and
the reduced order models. The figures show that the
reduced order models were a good fit.

Next, for step (3), we used the root locus technique
to select control gains for each reduced order model.
Figure 4 shows the root locus for both reduced order
models. From the root locus, we obtained the poles
and their damping ratios z for different proportional
gains Kp as listed in Table 1. The data show that for
Kp & 2 there is little damping at low valve lift.

For step (4), we simulated the original nonlinear
system in Dymola for Kp ¼ 1 and Kp ¼ 2. The steady-
state error was 0.06K for Kp ¼ 1. For Kp ¼ 2, we
observed oscillatory behaviour at low valve lift. Thus,
we selected a linear gain schedule such that Kp(u¼

Figure 3. Bode plots and step responses for full order models (with 37 states) and reduced order models (with 3 states). The top
row is for u ¼ 0.05 and the bottom row for u ¼ 0.95.

Journal of Building Performance Simulation 153

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



0.05) ¼ 1 and Kp(u¼ 0.95) ¼ 2. This linear gain
schedule resulted in the step response shown in
Figure 5, with a steady-state error below 0.4K. To
reduce the valve oscillation after the step signal at
t ¼ 30 min would require a reduction in Kp and hence
would lead to a larger steady-state error. Thus, if the
transient response in Figure 5 is not acceptable, then
the proportional controller would have to be replaced,
for example, by a proportional-integral controller.

4.6.2. Precommissioning of a fan static pressure reset
controller for a Variable Air Volume flow system

For Variable Air Volume (VAV) flow systems with
direct digital control to the zone level, the California
Title 24 Energy Code requires supply pressure reset by
zone demand (CEC 2005). A control logic that is used
by major control vendors is the Trim and Response
logic (Taylor 2007). This control logic may be
implemented as follows. If the supply fan is on, a
central controller samples the VAV damper positions

every 2 min. If no damper is close to fully open, the
pressure set point is decreased by 10 Pascals; else it is
increased by 15 Pascals. When the fan switches off, the
set point is set to 125 Pascals.

Since the default parameters for the pressure
adjustment will work well only for few systems, a trial
and error tuning is almost always required during
commissioning (Taylor 2007). During commissioning,

Table 1. Damping ratio z for both reduced order models
for different proportional gains Kp. The row z (u ¼ 0.05) is
for the reduced order model that approximates the plant for
u ¼ 0.05.

Kp 0.13 0.5 1 2 5

z(u ¼ 0.05) 0.5 0.23 0.096 0.048 unstable
z(u ¼ 0.95) 0.5 0.28 0.19 0.13 0.07

Figure 4. Root locus plot for the reduced order models. The red solid locus corresponds to the system linearized at u ¼ 0.05
and the blue dashed locus is for u ¼ 0.95.

Figure 5. Closed loop step response with gain scheduling
such that Kp(u¼ 0.05) ¼ 1 and KP(u¼ 0.95) ¼ 2. The top
figure is the actuator input, and the bottom figure is the
temperature measured at the coil outlet.

154 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



the engineer adjusts pressure increments and decre-
ments until the system is stable.

We will now perform this procedure using a
Modelica model that we linked to the GenOpt
optimization program to find appropriate settings
that may be used as a starting point during a
commissioning process. For this example, we created
a Modelica implementation of the VAV system model
described in ASHRAE 825-RP (Haves et al. 1996).
Unlike the model used by Haves et al. (1996), our
model also includes equations for the CO2 concentra-
tion, in addition to equations for enthalpy (or
temperature), pressure and mass flow rate. We also
added models of completely mixed air volumes to
model the CO2 storage in the room air and in the
return air plenum. Figure 6 shows the system model in
Modelica. On top are the controllers for the
static pressure reset and the fan frequency drives.
The blue circles on the left are ambient conditions,
which are connected to an outside air mixing box.
There are also flow resistances for the ducts and the
supply and return fans. On the right is a system model
that encapsulates the supply ducts, the return ducts
and the six rooms.

Figure 7 shows the implementation of the room
models. Each room has an individual VAV damper
with nonlinear characteristics between opening angle
and flow rate. The model with label vav contains the
VAV damper and a flow resistance that has been
parameterized to account for the duct and diffuser
resistance. This model is connected to an instanta-
neously mixed room volume which is labeled vol.
Counterclockwise, this room volume model is con-
nected to a model for the room leakage to the exterior

(with label lea), to a port that allows connecting
different rooms with each other (using a flow resistance
to separate adjacent rooms), to a CO2 emission model
(its input is the number of people), and to another
mixed air volume that models the CO2 concentration
in the exhaust air plenum. Next, there is another port
that is used to connect the room volume to another
room to its right and to a CO2 sensor. The CO2 sensor
is connected to a model that converts mass fraction to
volume fraction. Its output is connected to a propor-
tional controller with saturation. The controller output
is connected to a model for the actuator motor, which
has a finite travel speed and a hysteresis that causes it
to adjust the damper position only if the position error
exceeds a threshold. This configuration is used for each
of the six rooms.

The six rooms are then connected with each other
using a pressure drop element to model interzonal air
exchange, and they are connected to an air distribution
system for the supply and return duct. This subsystem
model is then encapsulated into the icon with label roo
in Figure 6 and connected to the plant model to form
the overall system model.

In the system model, all air mass flow rates are
computed based on the flow friction and the fan curve
that relates fan volume flow rate with fan pressure raise
for the given number of revolutions which is determined
by a model for the fan frequency controller. The total
system model contained 730 simulation components
that led to a differential algebraic equation system with
4420 scalar equations and 40 state variables. Some
models triggered time events (e.g. for discrete time
controls) or state events (e.g. for the hysteresis of the
damper position adjustment). The computation time to

Figure 6. Implementation of VAV system model in Modelica.

Journal of Building Performance Simulation 155

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



Figure 7. Implementation of the room models in Modelica.

simulate one day was about 10 min. One of the main
reasons for the large computation time was the discrete
time control that led to time events, and themotormodel
of the VAV damper that triggered state events due to its
hysteresis model. In total, there were 1440 time events
and 5172 state events. The time integration step size,
which is adaptive, was never enlarged to more than 30 s,
most likely due to the events. Thus, while this system
model is applicable for controls analysis, one would
hardly use such a level of modelling detail for an annual
simulation. Rather, one may replace the discrete time
control with continuous time control to reduce the time
event, neglect the hysteresis of the motor to eliminate
state events, and introduce a transport delay in the
central plant’s supply and return duct to break a 50
dimensional nonlinear equation system that solves for
pressure and mass flow rates into three smaller equation
systems with dimensions 9, 15 and 21. When we
implemented these changes (in a more recent model
that was based on Modelica_Fluid version 1.0,
release candidate 1), the computation time was reduced
by a factor of 50, and the numerical solver was able to
enlarge the integration step size to amaximum of 1100 s.

To simplify the example, we assumed that thermal
conditioning and ventilation were provided by separate
systems. Thus, the one control objective was to maintain
a CO2 concentration in each room of 700PPM above the
outside air concentration by regulating the room VAV

dampers, and tominimize the fan static pressure using the
Trim and Response logic. We assumed a fixed outside air
damper position of u ¼ 0.5, an occupant density of up to
0.15 person per m2 floor area, which varied over the day
for each zone individually. A CO2 emission rate per
person of 8.18%1076 kg/s (¼ 15dm3/h CO2 emission per
person) was used (Lochau 1989). The VAV boxes are
pressure dependent, i.e., their flow rate changes if the
difference between inlet and room static pressure changes.
Each room has a continuous-time proportional controller
that tracks the room CO2 concentration. Figure 8a shows
the time response of the system with base case controller
settings as listed in Table 2. The figure shows that during
the occupied hours, there was a frequent change in duct
static pressure (bottom figure) which caused an oscilla-
tory behaviour of the VAV dampers (middle figure).

Next, to avoid the oscillatory VAV actuator
movement, we adjusted the sampling time ts, the
pressure increment dpi and decrement dpd of the Trim
and Response algorithm. We note that because of the
nonlinearity of fan power consumption with respect to
duct static pressure set point, on a temporal average,
an oscillatory duct static pressure setpoint causes more
flow friction compared to a stable control, and hence
leads to a larger fan energy use. Thus, instead of a
manual trial and error procedure to find values for ts,
dpi and dpe that lead to a stable control, we used
optimization to find the value for x ¼D ðts; dpi; dpeÞ that
minimizes the fan energy use, subject to a constraint

156 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



Figure 8. CO2 concentrations above outside air concentration in the six rooms (with the set point shown in black), VAV
damper positions and duct static pressure for the base case and for the control settings obtained using optimization.

on the room CO2 concentration. In particular, we
solved

min x2Xf fðxÞ j gðxÞ ¼ 0g; ð3Þ

where

fðxÞ ¼ 1

E0

Z T

0
Pf ðx; tÞ dt ð4Þ

is the normalized fan energy use, X is the feasible set
that imposes upper and lower bounds for the
independent variables, T ¼ 1 day is the simulation
period and Pf (%,%) is the sum of the supply and return
fan power consumption. The term E0 ¼

R T
0 Pf ðx0; tÞdt

is the fan energy consumption at the initial iterate x0. It
is used to normalize the cost function which will
facilitate the scaling of the constraint function g(%). The
constraint function g: R3!R ensures that the CO2 set
point in the rooms is not exceeded, except for a
possible user-specified number of extreme zones in
which the CO2 may not be tracked. Because we

configured the Trim and Response logic so that at
least three rooms require an increase in static pressure
before the fan static pressure set point is increased, we
defined the constraint function as

gðxÞ ¼ 1

T

Z T

0
ðmaxf0; ðyjðx; tÞ=x̂sÞ ' 1=ð2KpÞ

' 1 j j 2 Jðx; tÞgÞ2 dt; ð5Þ

where J(% , %) is the index set of all VAV dampers
except the two with the biggest set point violation,
yj (% , %) is the measured room CO2 concentration,
x̂s ¼ 700 PPM is the CO2 set point (above the outside
air concentration) and Kp ¼ 10 is the proportional
gain of the P controller for the room air dampers. The
term 1/(2Kp) is used to account for the steady-state
error associated with proportional controllers.

To compute a solution for (3), we solved the
sequence of optimization problems

Pk min x2XykðxÞ; ð6Þ

Journal of Building Performance Simulation 157

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



where yk(%), for k2N, is the optimality function,
defined as ykðxÞ ¼

D
fðxÞ þ k4 gðxÞ for k2N4. We solved

(6) for k2 {1,2,3,4}, using the GenOpt optimization
program. Parametric studies showed that f(%) is non-
convex and may have local minima. We also note that
f(%) is non-differentiable because of the state-events
and time-events. Therefore, we used GenOpt’s Particle
Swarm Optimization algorithm PSOCCMesh,
which is a global optimization algorithm for non-
differentiable cost functions. We will denote by x* the
best iterate found when solving Pk and by x0 the initial
iterate.

In addition to doing the optimization, we also
tested how robust the optimal parameter settings are
with respect to changes in the CO2 emission profiles.
For this robustness test, for each room we changed the
time profiles and their magnitude. For the new set of
profiles, we conducted two simulations, one with the
initial iterate x0 and one with x* which was obtained
when solving the optimization problem (6) with the
original set of CO2 emission profiles. Thus, x* need not
be optimal for the new set of CO2 emission profiles, but
our objective is to see if x* also leads to good
performance under this new set of CO2 emission
profiles. The performance indices were f(%), as defined
in (4), and the normalized distance s(%) travelled by the
actuators of all VAV dampers during the simulation
period.

Table 2 lists the initial values and the final values of
the optimization, together with the results of the
optimization and the robustness test. For both CO2

emission profiles, the optimized parameter settings
reduced the fan energy consumption by 3% to 4% and
the distance s(%) by about 14%. For the modified set of
CO2 emission profiles, the fan energy was significantly
smaller because less CO2 was emitted. Figure 8 also
shows that the optimized parameter settings x* led to

fewer oscillations of the VAV dampers because of a
less aggressive re-adjustment of the static pressure set
point. The CO2 concentrations are, however, still
maintained within the acceptable limit, i.e., g(x) ¼ 0
for all four simulations. There is a steady-state control
error between 18:00 and 22:00, as shown in Figure 8,
because during this time period, the fan is still on (as it
is operated on a timer) while all VAV boxes are closed.

5. Conclusions

We showed that equation-based object-oriented mod-
elling allows analysing problems that are beyond the
capabilities of traditional building simulation pro-
grams. Compared to earlier efforts to establish
equation-based object-oriented modelling in the build-
ing simulation community, we believe that the devel-
opment of Modelica, which is supported across many
engineering domains, provides an opportunity to
revive the effort of establishing more modular and
flexible modelling and simulation techniques for
building energy and control systems. As Modelica is
an open-source language for which several commercial
and open-source modelling and simulation environ-
ments are both existing and emerging, it provides an
open environment for collaboration and model
exchange.

Although there are many challenges to be over-
come, we believe that equation-based object-oriented
modelling allows the field of building simulation to
progress towards the next generation of tools. Such a
progression is similar to the developments in computer
science in which the level of abstraction at which
programs are formulated increased from machine
language to symbolic assembler, to macro processors,
to high-level procedural languages (such as FOR-
TRAN) and further to object-oriented languages
(Shaw and Garlan 1996). It would be rather surprising
if the field of building simulation were to stagnate at
procedural languages that frequently led to large
monolithic simulation programs, which are hard to
maintain and for which adding new models and
analysis features is a significant time investment. A
more flexible modelling environment also has the
potential to better support design processes that reduce
cost and development time, such as model-based
system-level design, in which systems are expressed at
an increasingly higher level of abstraction to allow a
designer to focus on the system architecture rather
than its details of implementation (Sangiovanni-
Vincentelli 2007).

However, further research and development is
needed to make available equation-based object-
oriented modelling and simulation to a larger audience
for whom debugging non-convergent models is not an

Table 2. Base case and results of the control parameter
optimization.

original CO2

profile
modified CO2

profile

base
case, x0

optimum,
x*

base
case, x0

optimum,
x*

sampling time
ts in [s]

120 220 120 220

pressure increment
di in [Pa]

15 5 15 5

pressure decrement
dd in [Pa]

710 720 710 720

fan energy use f(x) 1 0.966 0.642 0.614
constraint

violation g(x)
0 0 0 0

distance s(x) 1 0.853 0.816 0.702

158 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



option. Such research and development is part of the
future work on the Modelica-based library for building
energy and control systems described here.

To further disseminate equation-based object-
oriented modelling and simulation to the building
simulation community, the question, however, is not
how to get existing users to adapt to a new technology,
but rather how to better integrate modelling into rapid
prototyping for inventing new building systems, and
into the design and operation of buildings. New
technologies are seldom introduced by forcing a
change onto existing users, but rather through the
enabling of processes that add value for the user and
that were not possible before.

Nomenclature

Conventions

(1) Elements of a set or a sequence are denoted by
subscripts.

(2) f(%) denotes a function where (%) stands for the
undesignated variables. f(x) denotes the value
of f(%) for the argument x. f: A!B indicates that
the domain of f(%) is in the space A, and that the
image of f(%) is in the space B.

(3) We say that a function f: Rn!R is once
continuously differentiable if f(%) is defined on
Rn, and if f(%) has a continuous derivative on Rn.

Symbols

f(%) cost function
g(%) constraint function
yk(%) optimality function, for k 2 N
Kp proportional gain
G(s) open loop transfer function
t time
u control signal
x independent parameter
xk iterate of the optimization algorithm, for k2N
x* best iterate found by the optimization algorithm
y measurement signal
s Hankel singular values of the linearized system
z damping ratio
a2A a is an element of A
N {0,1,2,. . .}
R set of real numbers
¼D equal by definition

Acknowledgements

This research was supported by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Building
Technologies of the US Department of Energy, under
Contract No. DE-AC02-05CH11231. The author would

like to thank Scott A. Bortoff at the United Technologies
Research Center for his input to the controls design example
and Philip Haves, Brian A. Coffey and Walter F. Buhl, all at
the Lawrence Berkeley National Laboratory, as well as the
anonymous reviewers, for their valuable feedback to the
manuscript.

Notes

1. For example, the statement Q1:¼-Q27Q3; is
imperative and describes that Q1 is to be computed by
assigning the sum of -Q2 and -Q3. A declarative
statement may have the form 0 ¼ Q1þQ2þQ3;
which only describes how the three variables
are related, but it does not specify what computer
instructions need to be done to compute one from the
other two.

2. Within the ASHRAE Technical Committee 4.7, the
prospect of Modelica was already mentioned in 1998
when Sowell reported on this language. The committee
reported that Modelica could eventually subsume NMF
but it was decided to press for NMF and monitor the
Modelica progress (Spitler 1998).

3. By hybrid differential algebraic systems of equations,
we mean differential and difference equations that are
coupled to continuous and discrete algebraic equations.
An example is a chiller control that may be expressed as
a state machine that is linked to a discrete time
controller for a mechanically cooled building, which
may be described by differential and algebraic
equations.

4. The term k4 adds a penalty to f(%), if constraints are
violated, that is increasing in k, for k2N.

References

Asanovic, K., et al., 2006. The landscape of parallel computing
research: a view from Berkeley. Technical report UCB/
EECS-2006-183. Berkeley: EECS Department, Univer-
sity of California.

ASHRAE, 2005. Sequences of operation for common HVAC/
Systems. Atlanta, GA. ISBN 1-931862-98-2.

Banaszuk, A., Mehta, P.G., and Hagen, G., 2007. The role of
control in design: from fixing problems to the design of
dynamics. Control Engineering Practice, 15 (10), 1292–
1305.

Bazjanac, V. and Maile, T., 2004. IFC HVAC interface to
EnergyPlus – a case of expanded interoperability for
energy simulation. In: Proceedings of SimBuild 2004,
Aug, Boulder, CO.

Brück, D., et al., 2002. Dymola for multi-engineering
modeling and simulation. In: M. Otter, ed. Proceedings
of the 2nd Modelica conference, Mar, Oberpfaffenhofen,
Germany. 55–1–55–8.

Bunus, P. and Fritzson, P., 2004. Automated static analysis
of equation-based components. Simulation, 80 (7–8),
321–345.

Casella, F., et al., 2006. The Modelica fluid and
media library for modeling of incompressible and
compressible thermo-fluid pipe networks. In: C. Kral
and A. Haumer, eds. Proceedings of the 5-th International
Modelica Conference, Vol. 2, Sep, Vienna, Austria, 631–
640.

CEC, 2005. Building energy efficiency standards, nonresiden-
tial compliance manual. Sacramento, CA.

Journal of Building Performance Simulation 159

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



Cellier, F.E., 1996. Object-oriented modeling: means for
dealing with system complexity. In: Proceedings 15th
Benelux Systems and Control Conference, Mierlo, The
Netherlands, 53–64.

Cellier, F.E. and Kofman, E., 2006. Continuous system
simulation. New York: Springer.

Charlesworth, P., et al., 1991. The energy kernel system. In:
J.A. Clarke, J.W. Mitchell, and R.C.V. de Perre, eds.
Proceedings of the IBPSA Conference, Aug, Nice, France.

CIBSE, 2000. Building control systems, CIBSE Guide H.
London: Butterworth-Heinemann.

Clarke, J.A., 2001. Energy simulation in building design. 2nd
ed. Oxford, UK: Butterworth-Heinemann.

Crawley, D.B., et al., 2001. EnergyPlus: creating a new-
generation building energy simulation program. Energy
and Buildings, 33 (4), 443–457.

Elmqvist, H., Otter, M., and Cellier, F., 1995. Inline
integration: a new mixed symbolic/numeric approach
for solving differential– algebraic equation systems. In:
Keynote Address, Proceedings. ESM095, Jun, Prague,
CzechRepublic, xxiii–xxxiv.

Elmqvist, H., Tummescheit, H., and Otter, M., 2003. Object-
oriented modeling of thermo-fluid systems. In: P.
Fritzson, ed. Proceedings of the 3rd Modelica conference,
Nov, Linköping, Sweden, 269–286.

Felgner,F.,et al., 2002.Simulationof thermalbuildingbehaviour
inModelica. In:M.Otter, ed.Proceedingsof the2ndModelica
conference, Mar, Oberpfaffenhofen, Germany, 147–154.

Fritzson, P., 2004. Principles of object-oriented modeling and
simulation with Modelica 2.1. Piscataway, NJ: Wiley.

Fritzson, P. and Engelson, V., 1998. Modelica – a unified
object-oriented language for system modeling and
simulation. Lecture Notes in Computer Science, 1445.

Hairer, E. and Wanner, G., 1996. Solving ordinary differential
equations. II. 2nd Springer series in computational
mathematics. Berlin: Springer-Verlag.

Haves, P., et al., 1996. A standard simulation testbed for the
evaluation of control algorithms & strategies. Final Report
825-RP, ASHRAE, Atlanta, GA.

Henderson, H. and Rengarajan, K., 1996. A model to predict
the latent capacity of air conditioners and heat pumps at
part- load conditions with constant fan operation.
ASHRAE Transactions, 102 (1), 266–274.

Hoh, A., et al., 2005. A combined thermo-hydraulic
approach to simulation of active building components
applying Modelica. In: G. Schmitz, ed. Proceedings of the
4th Modelica conference, Mar, Hamburg, Germany.

Klein, S.A. and Alvarado, F.L., 1992. Engineering equation
solver (EES).

Kolda, T.G., Lewis, R.M., and Torczon, V., 2003.
Optimization by direct search: new perspectives on
some classical and modern methods. SIAM Review, 45
(3), 385–482.

Lochau, R., 1989. Physiologische Grundlagen. In: W. Leiner,
H. Schedwill, G. Seng, and W. Stäbler, eds.Handbuch der
Klimatechnik, Vol. 1. Karlsruhe, Germany: Verlag C.F.
Müller GmbH, 93.

Mathworks, 2008. Control System Toolbox 8.2, Natick, MA.
Mattsson, S.E. and Elmqvist, H., 1997. Modelica – an

international effort to design the next generation model-
ing language. In: L. Boullart, M. Loccufier, and S.E.
Mattsson, eds. 7th IFAC Symposium on Computer Aided
Control Systems Design, Apr, Gent, Belgium.

Merz, R.M., 2002. Objektorientierte modellierung thermischen
Gebäudeverhaltens. Thesis (PhD). Universität
Kaiserslautern.

Nytsch-Geusen, C., et al., 2005. A hygrothermal
building model based on the object-oriented modeling
language Modelica. In: I. Beausoleil-Morrison and M.
Bernier, eds. Proceedings of the Ninth International
IBPSA Conference, Vol. 1, Aug, Montreal, Canada.
867–876.

Polak, E., 1997. Optimization, algorithms and consistent
approximations. Applied Mathematical Sciences
Vol. 124. New York: Springer Verlag.

Polak, E. and Wetter, M., 2006. Precision control for
generalized pattern search algorithms with adaptive
precision function evaluations. SIAM Journal on Opti-
mization, 16 (3), 650–669.

Sahlin, P. and Sowell, E.F., 1989. A neutral format for
building simulation models. In: Proceedings of the Second
International IBPSA Conference, Jun, Vancouver, BC,
Canada, 147–154.

Sangiovanni-Vincentelli, A., 2007. Quo Vadis, SLD?
Reasoning about the trends and challenges of
system level design. Proceedings of the IEEE, 95 (3),
467–506.

Shaw, M. and Garlan, D., 1996. Software architecture:
perspectives on an emerging discipline. New Jersey:
Prentice Hall.

Sowell, E.F., et al., 1986. A prototype object-based system for
HVAC simulation. Technical report LBL-22106, Lawr-
ence Berkeley National Laboratory.

Sowell, E.F. and Haves, P., 2001. Efficient solution strategies
for building energy system simulation. Energy and
Buildings, 33 (4), 309–317.

Spitler, J.D., 1998. ASHRAE TC 4.7 Minutes.
Taylor, S.T., 2007. VAV system static pressure setpoint reset.

ASHRAE Journal, 24–32.
Tiller, M.M., 2001. Introduction to physical modeling with

Modelica. Norwell, MA: Kluwer Academic Publisher.
Trcka, M., Hensen, J.L.M., and Wijsman, A.J.T.M., 2006.

Distributed building performance simulation - a novel
approach to overcome legacy code limitations. ASHRAE
HVAC&R, 12 (3a), 621–640.

Trcka, M., Wetter, M., and Hensen, J., 2007. Comparison of
co-simulation approaches for building and HVAC/R
Simulation. In: J. Yi, Z. Yingxin, Y. Xudong, and L.
Xianting, eds. Proceedings of the 10-th IBPSA
Conference, Beijing.

Vuduc, R., Demmel, J.W., and Yelick, K.A., 2005. OSKI: A
library of automatically tuned sparse matrix kernels.
Journal of Physics: Conference Series, 16, 521–530.

Wetter, M., 2004. GenOpt, generic optimization program, User
Manual, Version 2.0.0. Technical report LBNL-54199.
Berkeley, CA, USA: Lawrence Berkeley National
Laboratory.

Wetter, M., 2006a. Multizone airflow model in Modelica. In: C.
Kral and A. Haumer, eds. Proceedings of the 5th Interna-
tional Modelica Conference, Vol. 2, Sep, Vienna, Austria,
431–440.

Wetter, M., 2006b. Multizone building model for thermal
building simulation in Modelica. In: C. Kral and A.
Haumer, eds. Proceedings of the 5th International
Modelica Conference, Vol. 2, Sep, Vienna, Austria,
517–526.

Wetter, M. and Haves, P., 2008. A modular building controls
virtual test bed for the integration of heterogeneous
systems. In: Proceedings of SimBuild, Aug, Berkeley, CA.

Wetter, M., et al., 2008. Using SPARK as a solver for
Modelica. In: Proceedings of SimBuild, Aug, Berkeley,
CA.

160 M. Wetter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



Wetter, M. and Polak, E., 2004a. Building design
optimization using a convergent pattern search algorithm
with adaptive precision simulations.Energy andBuildings, 37
(6), 603–612.

Wetter, M. and Polak, E., 2004b. A convergent optimization
method using pattern search algorithms with adaptive
precision simulation. Building Services Engineering
Research and Technology, 25 (4), 327–338.

Wetter, M. and Wright, J., 2004. A comparison of
deterministic and probabilistic optimization algorithms
for nonsmooth simulation-based optimization. Building
and Environment, 39 (8), 989–999.

Winkelmann, F.C., et al., 1993. DOE-2 Supplement, Version
2.1E. Technical report LBL-34947, Lawrence Berkeley
National Laboratory, Berkeley, CA, USA.

Journal of Building Performance Simulation 161

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
9
:
4
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9


